Suppose $a_n>0$ for all $n\in \mathbb{N}$, and consider two series $$\sum_{n=1}^{\infty}\frac{1}{a_n},\qquad \sum_{n=1}^{\infty}\frac{n}{a_1+a_2+\cdots+a_n}.$$
Due to the inequality from this question $$\sum_{k=1}^{n}\frac{k}{a_1+a_2+\cdots+a_k}<2\sum_{k=1}^{n}\frac{1}{a_k},\qquad n\in\mathbb{N},$$ we can conclude that $$\sum_{n=1}^{\infty}\frac{1}{a_n}<\infty\implies\sum_{n=1}^{\infty}\frac{n}{a_1+a_2+\cdots+a_n}<\infty.$$ $\textbf{What I want to do is to prove or disprove}$: $$\sum_{n=1}^{\infty}\frac{n}{a_1+a_2+\cdots+a_n}<\infty\implies\sum_{n=1}^{\infty}\frac{1}{a_n}<\infty.$$ Some progress: When $a_n<a_{n+1}$, it is easy to see $$\frac{1}{a_n}<\frac{n}{a_1+a_2+\cdots+a_n},$$ which implies that $$\sum_{n=1}^{\infty}\frac{n}{a_1+a_2+\cdots+a_n}<\infty\implies\sum_{n=1}^{\infty}\frac{1}{a_n}<\infty.$$
How about the general case? Any help and hint will welcome!