In trying to verify the identity
$$\sum_{j=0}^{k} {n-j \choose n-k}
\left\langle\!\! \left\langle n\atop j
\right\rangle\!\! \right\rangle
= \sum_{j=0}^k (-1)^{j+k} {n+k \choose n+j}
\left\{ n+j \atop j\right \}$$
we quote from MSE
the following identity
$$\left\langle\!\! \left\langle n\atop k
\right\rangle\!\! \right\rangle =
\sum_{j=0}^k (-1)^{k-j} {2n+1\choose k-j} {n+j\brace j}.$$
We get for the LHS
$$\sum_{j=0}^{k} {n-j \choose n-k}
\sum_{p=0}^j (-1)^{j-p} {2n+1\choose j-p} {n+p\brace p}
\\ = \sum_{p=0}^k {n+p\brace p}
\sum_{j=p}^k (-1)^{j-p} {2n+1\choose j-p} {n-j\choose n-k}.$$
The inner sum is
$$\sum_{j=0}^{k-p} (-1)^j {2n+1\choose j}
{n-j-p\choose n-k}
\\ = \sum_{j=0}^{k-p} (-1)^j {2n+1\choose j}
{n-j-p\choose k-p-j}
\\ = [z^{k-p}] (1+z)^{n-p}
\sum_{j=0}^{k-p} (-1)^j {2n+1\choose j}
\frac{z^j}{(1+z)^j}.$$
Here the coefficient extractor enforces the upper limit of the sum
and we may extend $j$ to infinity:
$$[z^{k-p}] (1+z)^{n-p}
\sum_{j\ge 0} (-1)^j {2n+1\choose j}
\frac{z^j}{(1+z)^j}
\\ = [z^{k-p}] (1+z)^{n-p}
\left(1-\frac{z}{1+z}\right)^{2n+1}
= [z^{k-p}]
\frac{1}{(1+z)^{n+p+1}}
\\ = (-1)^{k-p} {k-p+n+p\choose n+p}
= (-1)^{k-p} {n+k\choose n+p}.$$
Introducing the leading term,
$$\sum_{p=0}^k (-1)^{k+p}
{n+k\choose n+p} {n+p\brace p}$$
This is the claim.
As for the polynomials we find
$$\sum_{k=0}^n x^k
\sum_{j=0}^{k} {n-j \choose n-k}
\left\langle\!\! \left\langle n\atop j
\right\rangle\!\! \right\rangle
= \sum_{j=0}^n
\left\langle\!\! \left\langle n\atop j
\right\rangle\!\! \right\rangle
\sum_{k=j}^n {n-j\choose n-k} x^k
\\ = \sum_{j=0}^n
\left\langle\!\! \left\langle n\atop j
\right\rangle\!\! \right\rangle x^j
\sum_{k=0}^{n-j} {n-j\choose n-j-k} x^k
= \sum_{j=0}^n
\left\langle\!\! \left\langle n\atop j
\right\rangle\!\! \right\rangle x^j
\sum_{k=0}^{n-j} {n-j\choose k} x^k
\\ = \sum_{j=0}^n
\left\langle\!\! \left\langle n\atop j
\right\rangle\!\! \right\rangle x^j
(1+x)^{n-j}
= (1+x)^n \sum_{j=0}^n
\left\langle\!\! \left\langle n\atop j
\right\rangle\!\! \right\rangle
\frac{x^j}{(1+x)^j}.$$
Multiplying by $3^n$ and evaluating at $x=-1/3$ we obtain
$$3^n \frac{2^n}{3^n}
\sum_{j=0}^n
\left\langle\!\! \left\langle n\atop j
\right\rangle\!\! \right\rangle
\frac{(-1/3)^j}{(2/3)^j}
= 2^n
\sum_{j=0}^n
\left\langle\!\! \left\langle n\atop j
\right\rangle\!\! \right\rangle
\left(-\frac{1}{2}\right)^j$$
as claimed.
Remark. Maybe we can pause here for a few days. Thanks!