$\text{Let $(X,d) $ be a compact metric space and $f:X\longrightarrow X$ a continuous operator}$
$\text{such that } d\big(f(x),f(y)\big)<d(x,y)\text{ } \forall x,y\in X, x\neq y.$
$\text{I know that there exists a unique fixed point $x_0\in X: f(x_0)=x_0$},$
$\text{however, how can we show that: }$
$$\lim_{n\to\infty}f^n(x)=x_0 \text{ }\forall x\in X$$
$\text{Where }f^n(x):=f\color{black}{\underbrace{ ofofo\dots o f(x) }_{ \text{$n$ times } }}.$
$$\bullet \text{ My approach: $X$ is compact, hence $\exists$ subsequence $f^{k_n}(x) :k_n\ge n$ s.t}$$ $$f^{k_n}(x) \longrightarrow a\in X,\text{ $f$ is continuous, thus $f^{k_n +1}(x)\longrightarrow f(a)\implies f(a)=a\implies a=x_0$}$$
$\text{How can i continue from this point on, any ideas?}$