Given symmetric positive semidefinite rank-$r$ matrix $R \in \mathbb{C}^{m \times m}$, where $r < m$, and scalar $p \geq 0$, I have the following optimization problem in matrix $X \in \mathbb{C}^{n \times m}$.
$$\begin{array}{ll} \underset{X \in \mathbb{C}^{n \times m}}{\text{minimize}} & \text{trace} \left( \left(I + \frac{RX^{H}XR}{\sigma^{2}} \right)^{-1} R^{2}\right)\\ \text{subject to} & \text{trace}\left( X^{H} X \right) \leq p\end{array}$$
Can someone help me with this problem, every approach I tried is futile and leading to a dead-end?