Is it true that $\gcd(a,bc)=\gcd(a,b)\gcd({a\over\gcd(a,b)}, c)$?
It is true in quite a few examples that I came up with, e.g.
$a = 18, b = 21, c = 33$
$\gcd(18,21)\gcd({18\over\gcd(18,21)}, 33) = 3 \gcd({18 \over 3}, 33) = 3 \times 3 = 9$
$\gcd(18,693) = 9$
Here is my (probably not very good) attempt at a proof:
For a $b$ where $\gcd(a, b) = 1$
For a $c$ where $\gcd(a, c) = 1$$\gcd(k_1a, k_1b) = k_1$
$\gcd(k_2a, k_2c) = k_2$$\gcd(k_1k_2a, k_1k_2bc) = k_1k_2$
Hence, $\gcd(k_1k_2a, k_1b) \gcd({k_1k_2a \over \gcd(k_1k_2a, k_1b)}, k_2b) = k_1 \gcd({k_1k_2a \over k_1}, k_2c) = k_1k_2 = \gcd(k_1k_2a, k_1k_2bc)$
Is this statement true, or did I just stumble across several lucky coincidences?