I need to know the value of $\sum_{x \in \mathbb{F}_q} \chi(x^3 - x)$, where $q = p^r$ with $p$ prime and $\chi$ is the Jacobi symbol.
If we take $-x$, we have $\chi((-x)^3 - (-x)) = \chi(-1)\chi(x^3 - x)$ and $\chi(-1) = -1$ since $q \equiv 3 \; (mod \; 4)$. Thus, the terms for $x$ and the terms for $-x$ cancel. Therefore, $\sum_{x \in \mathbb{F}_q} \chi(x^3 - x) = 0$.
But, if $q$ is even or $q \equiv 1 \; (mod \; 4)$, then $\chi(-1) = 1$.
How can I find the value of $\sum_{x \in \mathbb{F}_q} \chi(x^3 - x)$ when $q$ is even or $q \equiv 1 \; (mod \; 4)$?