If $a,b,c\in \mathbb R$ and, $$\left(\frac{a-b}{a+b}\right)\left(\frac{b-c}{b+c}\right)\left(\frac{c-a}{c+a}\right)=-27$$ Evaluate $$\frac{b}{a+b}+\frac{c}{b+c}+\frac{a}{c+a}$$ I noticed that you can reduce the question to the following:
If $(1-2x)(1-2y)(1-2z)=-27$, then evaluate $x+y+z$ where $x=\frac{b}{a+b}, \ y=\frac{c}{b+c}, \ z=\frac{a}{c+a}$
I'm not sure how to solve this. I think it may use inequalities or pure algebra.
Please help me out here. Thanks a lot :)