Prove that the solution to Cauchy's problem $$ \begin{cases} y'=y^2+x^2\\ y(0)=0 \end{cases} $$ is an odd function, and that this solution can't be extended on $\mathbb{R}$.
I tried to substitute $y(x)$ with $-y(-x)$ and check if cancels out: $$ \begin{align} (-y(-x))'=(-y(-x))^2+x^2\\ y'(-x)=y^2(-x)+(-x)^2 && \text{substiute } t=-x\\ y'(t)=y^2(t)+t^2 \end{align} $$ I think that proves the first part.
As for the second part of the question:
let $y$ be a solution to the Cauchy's problem, then: $$ \begin{align} y'=y^2+x^2\\ y'\leq y^2\\ \int \frac{dy}{y^2}\leq \int dx\\ \frac{-1}{y}\leq x+c\\ \frac{1}{y}\geq -x+c\\ y\geq \frac{1}{-x+c} \stackrel{x\rightarrow c}{\longrightarrow}\infty \end{align} $$
therefore $y$ does not extend on $\mathbb{R}$. Is that correct?