2

How do I reduce the following and remove the $11$ from LHS, $$ 11x \equiv 4 \ \ \text{mod }50 $$

Bill Dubuque
  • 282,220

2 Answers2

0

$11x = 50k +4$

Multiplying the equation by 9,

$99x = 450k + 36$

$-x = 50(9k - 2x) + 36$

$x = 50(2x - 9k -1) + 14$

$x \equiv 14 \pmod {50}$

0

Variant using the particularity of multiplication by $11$.

Generally $11\times \overline{ab}=\overline{asb}=100a+10s+b\, $ where $\, s=a+b$ (provided $s<10$).

Notice that when $s=5$ we have $\begin{cases}100a\equiv 0\pmod {50}\\10s\equiv 0\pmod{50}\\11\times \overline{ab}\equiv b\pmod{50}\end{cases}$

Since we want $b=4$ then $a=1$ is forced and $$11\times 14\equiv 4\pmod{50}$$

Note that it works too for finding the inverse of $11$ (this time $b=1$ and $a=4$), thus $11^{-1}\equiv 41\pmod{50}$.

zwim
  • 29,833