After An interesting integral $\int{\dfrac{x^m}{x^{2m}+1}dx}$, I want to generalize a similar integral below $$\int{\frac{x^m}{x^{2m}-1}dx}$$ for all values of $m\in\mathbb{N}$. Below are my steps:
$$\int{\frac{x^m}{x^{2m}-1}dx}=\int{\frac{x^m}{(x^m-1)(x^m+1)}dx}=\frac{1}{2}\left(\int{\frac{1}{x^m-1}dx}+\int{\frac{1}{x^m+1}dx}\right)$$
I don't know what my next step should be.
How should I solve this integral?