Prove that there is no smooth solution ho the minimization problem:
$$\mathcal{L} (u)= \int_{0}^1 e^{-u'}+u^2 dx$$
Where the admissible space is $X =\{ u \in \mathcal{c}^2 [0,1] | u(0)=0, u(1)=1 \} $
UPDATE:
GOAL: I am trying to define a sequence of functions $u_n(x)$ in $X$ s.t their integrals $\mathcal{L}(u_n) \to 0$
What I have done so far:
Define $u_n(x)$ in the following manner: $$u_n (x)= \begin{cases} 0, \quad 0 \leq x\leq 1-\frac{1}{n} \\[2ex] ax^2 +bx+ c, \quad 1-\frac{1}{n}<x \leq 1 \end{cases}$$
where $n=1,2,3,..$. Require that $u_n$ satisfy: \begin{align} u_n(1-\frac{1}{n})=0\\ u_n(1)=1\\ u_n'(1-\frac{1}{n})=0\\ \end{align}
We then have: \begin{align} a+b+c=1\\ a(1-\frac{1}{n})^2+b(1-\frac{1}{n})+c=0\\ 2a(1-\frac{1}{n})+b=0 \end{align}
Find $a,b,c$ then:
$$u_n (x)= \begin{cases} 0, \quad 0 \leq x\leq 1-\frac{1}{n} \\[2ex] n^2x^2 -2n(n-1)x+ (n-1)^2, \quad 1-\frac{1}{n}<x \leq 1 \end{cases}$$
\begin{align} \int_0^1 e^{-u_n(x)'} + u_n^2(x) dx &= \int_0^{1-\frac{1}{n}} e^{0} + 0 dx + \int_{1-\frac{1}{n}}^1 e^{-(2n^2 x -2n(n-1))} + (n^2x^2 -2n(n-1)x+ (n-1)^2)^2 dx\\& = 1- \dfrac{1}{n}+ \dfrac{\mathrm{e}^{-2n}\left(\left(2n+5\right)\mathrm{e}^{2n}-5\right)}{10n^2} \end{align}
$$\dfrac{\mathrm{e}^{-2n}\left(\left(2n+5\right)\mathrm{e}^{2n}-5\right)}{10n^2} \to 0$$ and $$1-\dfrac{1}{n} \to 1$$