Let $f:[0,1]\to R$ be a function s.t. $f=0$ if $x=0$ or $x\in (R-Q)\cap[0,1]$ and $f={1\over q}$ if $x\in Q \cap[0,1]$ and $x={p\over q}$ for positive integer $s,t$ without common factor. Is $f$ integrable??
The definition of integrability is : a function is integrable if
(i) Both $L(f)$ and $U(f)$ are well defined and $L(f)=U(f)$ where $L(f)$ is the supremum of lower darboux sum and $U(f)$ is the infimum of the upper darboux sum
ii)For all $\epsilon$, there exist $\delta>0$ s.t. $\max(P)<\delta\implies U(f,P)-L(f,P)<\epsilon$ where P is a partition of the domain.