The question is:
Consider the partitions $(\Gamma_n)_{n\in\mathbb{N}}$, where $\Gamma_n=\{z,\cdots,z+\frac{1}{n} \}$ is a partition of $[z,z+\frac{1}{n}]$, for each $n\in\mathbb{N}$ (exclude $0$). Can we order decreasingly using $\max$ the set $$ \bigcup_{n\in\mathbb{N}}\Gamma_n\ \ \ ?$$
Is it valid for example define: $$y_1=\max \left\lbrace\bigcup_{n\in\mathbb{N}}\Gamma_n\right\rbrace =z+1$$ and for $n\geq 2$ define $$y_n=\max \left\lbrace \left\lbrace\bigcup_{n\in\mathbb{N}}\Gamma_n\right\rbrace \backslash \left\lbrace \bigcup_{k\leq n-1 }\{y_k\} \right\rbrace \right\rbrace$$ so we should have $y_n<y_{n+1}$ for all $n$. You can think of this problem also as (not partitions but sets of finite elements), at infinite we have $\lim_{n\to\infty}y_n=z$.