How to evaluate: $$\int_{0}^{1} \frac{\ln(1 + x + x^2 + \ldots + x^n)}{x}\mathrm d x$$
Attempt:
$$\int_{0}^{1}\frac{\ln(1 + x + x^2 + \ldots + x^n)}{x} \mathrm dx = \int_{0}^{1}\frac{\ln(1 -x^{n+1}) - \ln(1 - x)}{x}\mathrm d x$$
Any hints would be appreciated.
Edit: Testing it with different values of $n$, it seems like the integral evaluates to be $\frac{n \pi^2}{6(n+1)}$