A sequence $\left\{a_n\right\}$ is defined as $a_n=a_{n-1}+2a_{n-2}-a_{n-3}$ and $a_1=a_2=\frac{a_3}{3}=1$
Find the value of $$a_1+\frac{a_2}{2}+\frac{a_3}{2^2}+\cdots\infty$$
I actually tried this using difference equation method.Let the solution be of the form $a_n=\lambda^n$ $$\lambda^n=\lambda^{n-1}+2\lambda^{n-2}-\lambda^{n-3}$$ which gives the cubic equation $\lambda^3-\lambda^2-2\lambda+1=0$. But i am not able to find the roots manually.