6

I'm interested in a general formula for

$$\frac{d^n}{dx^n}\Big[f\left(\sqrt{x+1}\right)\Big].$$

In particular, Fàa di Bruno's formula gives

$$\frac{d^n}{dx^n}\Big[f\left(\sqrt{x+1}\right)\Big]=\sum_{k=1}^n f^{(k)}\left(\sqrt{x+1}\right)B_{n,k}\big(g'(x),g''(x),\dots,g^{(n-k+1)}(x)\big),$$

where $g(x)=\sqrt{x+1}$ and $B_{n,k}$ denote Bell polynomials.

I suspect we can do better than this, using the identities

$$\frac{d^k}{dx^k}\Big[\sqrt{x+1}\Big]=\left(\frac{1}{2}\right)^\underline{k}x^{1/2-k}=-\frac{(2k-3)!!}{(-2)^k}x^{1/2-k}=\frac{\sqrt{\pi}}{2\Gamma(3/2-k)}x^{1/2-k}.$$

In particular, every term in $B_{n,k}$ for fixed $n$ and $k$ will be some numerical factor times $(x+1)^{k/2-n}$ (see notes below), so the result is always of the form

$$\frac{d^n}{dx^n}\Big[f\left(\sqrt{x+1}\right)\Big] =\sum_{k=1}^n a_{n,k} \frac{f^{(k)}\left(\sqrt{x+1}\right)}{(x+1)^{n-k/2}}$$

for some constants $a_{n,k}.$ Is there an explicit expression for the $a_{n,k}$ above? For example, it seems likely that there is some expression using Stirling numbers, factorials, binomial coefficients, etc., given the combinatorial nature of the problem.


Current progress:

Using the first identity above for derivatives of $\sqrt{x+1}$ [where $(\cdot)^\underline{k}$ denotes the $k$th falling factorial], we have

$$B_{n,k}\big(g'(x),g''(x),\dots,g^{(n-k+1)}(x)\big) =B_{n,k}\left[\left(\frac{1}{2}\right)^\underline{1}x^{1/2-1},\left(\frac{1}{2}\right)^\underline{2}x^{1/2-2},\dots,\left(\frac{1}{2}\right)^\underline{n-k+1}x^{1/2-(n-k+1)}\right].$$

The definition of the Bell polynomials guarantees that the power of $x$ in every term of $B_{n,k}(\cdots)$ comes out to $x^{k/2-n}$, with pre-factor given by

$$a_{n,k}=B_{n,k}\left[\left(\frac{1}{2}\right)^\underline{1},\left(\frac{1}{2}\right)^\underline{2},\dots,\left(\frac{1}{2}\right)^\underline{n-k+1}\right],$$

so the remaining task is to simplify the above expression, if possible.

WillG
  • 7,382
  • do you mean $a_{n,k}$, actually ? – G Cab Jan 25 '21 at 19:08
  • @GCab Yes, $a_{n,k}$ is better. Just updated the post, thanks. – WillG Jan 25 '21 at 20:18
  • 1
    By differentiation, it follows that $$ a_{n + 1,k} = \tfrac{1}{2}a_{n,k - 1} + \big( \tfrac{k}{2} - n \big)a_{n,k} $$ with the natural convention $a_{n,0} = a_{n,n + 1} = a_{n,n + 2} = \cdots = 0$. This could perhaps be used to prove the factorial representation by @GCab – Gary Jan 26 '21 at 19:06
  • 1
    @Gary That's a nice insight. I think a proof by induction should be possible—I'm attempting that now. – WillG Jan 26 '21 at 20:07
  • 1
    @Gary: the recursion looks interesting,thanks for proposing – G Cab Jan 26 '21 at 22:57

3 Answers3

4

Heuristic

By analyzing the matrix of the first values for $a_{n,m}$ it is possible to deduce that $$ \bbox[lightyellow] { a_{\,n,\,m} =\frac{ \left( { - 1} \right)^{n - m} }{2^n} \left( \matrix{ 2n - 1 - m \cr 2n - 2m \cr} \right) \left( {2n - 2m - 1} \right)!!\quad \left| {\,0 \le m \le n} \right. } \tag{1}$$ which can be further simplified in terms of Gamma or other, and which can be of help for a rigorous demonstration.

Demonstration

We put $$ {{d^{\,n} } \over {dx^{\,n} }}f\left( {\sqrt {x + 1} } \right) = \sum\limits_{0\, \le \,k} {a_{\,n,\,k} {{f^{\,\left( k \right)} \left( {\sqrt {x + 1} } \right)} \over {\left( {x + 1} \right)^{\,n - k/2} }}} $$

The $a_{\,n,\,k} $ are supposed to be constant, independent from $f$.
Then they shall be valid for any infinitely differentiable function, in particular for analytic functions, and thus in particular for $$ f(x) = x^{\,2m} \quad \left| {\,0 \le m \in Z} \right. $$

For this we have $$ \left\{ \matrix{ f\left( {\sqrt {x + 1} } \right) = \left( {x + 1} \right)^{\,m} \hfill \cr {{d^{\,n} } \over {dx^{\,n} }}f\left( {\sqrt {x + 1} } \right) = m^{\,\underline {\,n\,} } \left( {x + 1} \right)^{\,m - n} \hfill \cr f^{\,\left( n \right)} \left( {\sqrt {x + 1} } \right) = \left( {2m} \right)^{\,\underline {\,n\,} } \left( {\sqrt {x + 1} } \right)^{\,2m - n} \hfill \cr} \right. $$ and therefore $$ \eqalign{ & m^{\,\underline {\,n\,} } \left( {x + 1} \right)^{\,m - n} = \cr & = \sum\limits_{0\, \le \,k} {a_{\,n,\,k} {{\left( {2m} \right)^{\,\underline {\,k\,} } \left( {x + 1} \right)^{\,m - k/2} } \over {\left( {x + 1} \right)^{\,n - k/2} }}} = \sum\limits_{0\, \le \,k} {a_{\,n,\,k} \left( {2m} \right)^{\,\underline {\,k\,} } \left( {x + 1} \right)^{\,m - n} } \cr & \quad \quad \Downarrow \cr & m^{\,\underline {\,n\,} } = \sum\limits_{0\, \le \,k} {a_{\,n,\,k} \left( {2m} \right)^{\,\underline {\,k\,} } } \quad \Leftrightarrow \quad \left( {{m \over 2}} \right)^{\,\underline {\,n\,} } = \sum\limits_{0\, \le \,k} {a_{\,n,\,k} m^{\,\underline {\,k\,} } } \cr} $$

Since $$ \eqalign{ & \left( {{m \over 2}} \right)^{\,\underline {\,n\,} } = \sum\limits_{\left( {0\, \le } \right)\,j\,\left( { \le \,n} \right)} {\left( { - 1} \right)^{\,n - j} \left[ \matrix{ n \cr j \cr} \right]\left( {{m \over 2}} \right)^{\,j} } = \sum\limits_{\left( {0\, \le } \right)\,j\,\left( { \le \,n} \right)} {{{\left( { - 1} \right)^{\,n - j} } \over {2^{\,j} }}\left[ \matrix{ n \cr j \cr} \right]m^{\,j} } \cr & \sum\limits_{0\, \le \,k} {a_{\,n,\,k} m^{\,\underline {\,k\,} } } = \sum\limits_{0\, \le \,k} {a_{\,n,\,k} \sum\limits_{\left( {0\, \le } \right)\,j\,\left( { \le \,k} \right)} {\left( { - 1} \right)^{\,k - j} \left[ \matrix{k \cr j \cr} \right]m^{\,j} } } = \cr & = \sum\limits_{\left( {0\, \le } \right)\,j\,} {\left( {\sum\limits_{0\, \le \,k} {\left( { - 1} \right)^{\,k - j} a_{\,n,\,k} \left[ \matrix{ k \cr j \cr} \right]} } \right)m^{\,j} } \cr} $$ i.e. $$ {{\left( { - 1} \right)^{\,n - j} } \over {2^{\,j} }}\left[ \matrix{ n \cr j \cr} \right] = \sum\limits_{0\, \le \,k} {\left( { - 1} \right)^{\,k - j} a_{\,n,\,k} \left[ \matrix{ k \cr j \cr} \right]} $$ which can be viewed as a matrix relation involving the matrix $A:\; A_{\,n,\,k} = a_{\,n,\,k}$ multiplied by the matrix of the signed Stirling N. of 1st kind, which is well known to be the inverse of the Stirling N. of 2nd kind, so: $$ \bbox[lightyellow] { a_{\,n,\,m} = \sum\limits_{0\, \le \,k} {{{\left( { - 1} \right)^{\,n - k} } \over {2^{\,k} }} \left[ \matrix{ n \cr k \cr} \right]\left\{ \matrix{ k \cr m \cr} \right\}} }\tag{2}$$

The computation of the above checks with the heuristic formula:
it remains to demonstrate this fact analytically.

G Cab
  • 35,964
  • Thanks for this hint. Does the rigorous demonstration rely on any tricky identities involving the Bell polynomials (such as those listed on Wikipedia), or can it be done relatively directly from the definition? – WillG Jan 26 '21 at 03:52
  • @WillG: I'll work further on that – G Cab Jan 26 '21 at 08:34
  • Accepting this answer to give credit for finding the key result. See my answer for a proof by induction that confirms this answer. – WillG Jan 27 '21 at 05:09
1

Thanks to G Cab's inference of the correct answer and Gary's comment on the recursive formula for the $a_{n,k}$'s, I have now found a proof by induction of the result. I'll post it here for posterity.


Define $a_{n,k}=0$ if $k=0$ or $k>n$, and otherwise let it be defined as in the original post. Then we can write

$$\frac{d^n}{dx^n}\Big[f\left(\sqrt{x+1}\right)\Big] =\sum_{k=0}^\infty a_{n,k} \frac{f^{(k)}\left(\sqrt{x+1}\right)}{(x+1)^{n-k/2}},$$

and differentiating both sides gives the recurrence relation $a_{n+1,k}=\frac{1}{2}a_{n,k-1}+(k/2-n)a_{n,k}$ for all $n,k≥1.$ This is equivalent to

$$a_{n+1,k+1}=\frac{1}{2}a_{n,k}+\left(\frac{k+1}{2}-n\right)a_{n,k+1}\qquad\Bigg|\qquad n≥1,k≥0.$$

Now define

$$c_{n,k}:=\frac{(-1)^{n-k}}{2^n}\frac{(2n-1-k)!}{(2n-2k)!!(k-1)!}$$

for $n≥1,1≤k≤n$, and $c_{n,k}=0$ otherwise. (In fact, the first expression also works for these cases if we interpret negative factorials as $\infty$ and $1/\infty$ as zero.) It is straightforward to check that this formula for $c_{n,k}$ is equivalent to $(1)$ in G Cab's answer.

Induction Part 1

It is quick to check that $c_{n,k}=0=a_{n,k}$ for $k=0$ or $k>n$, and that $c_{1,1}=1/2=a_{1,1}.$

Induction Part 2

Let $n≥1,k≥0$ be fixed, and assume that $c_{n,k}=a_{n,k}$ and $c_{n,k+1}=a_{n,k+1}$ for these particular values. We will show that $c_{n+1,k+1}=a_{n+1,k+1},$ which proves the desired result by induction.

$\begin{align*} a_{n+1,k+1}&=\frac{1}{2}a_{n,k}+\left(\frac{k+1}{2}-n\right)a_{n,k+1} \\\\ &=\frac{1}{2}c_{n,k}+\left(\frac{k+1}{2}-n\right)c_{n,k+1} \\\\ &=\frac{1}{2}\frac{(-1)^{n-k}}{2^n}\frac{(2n-1-k)!}{(2n-2k)!!(k-1)!} +\left(\frac{k+1}{2}-n\right)\frac{(-1)^{n-k-1}}{2^n}\frac{(2n-2-k)!}{(2n-2k-2)!!k!} \\\\ &=\left[ \frac{k}{2n-k}+(2n-k-1)\frac{2n-2k}{(2n-k)(2n-k-1)} \right] \frac{(-1)^{n-k}}{2^{n+1}}\frac{(2n-k)!}{(2n-2k)!!k!} \\\\ &=\left[ \frac{k}{2n-k}+\frac{2n-2k}{2n-k} \right] c_{n+1,k+1} \\\\ &=c_{n+1,k+1} \end{align*}$

WillG
  • 7,382
1

A formula to calculate the $n$-th derivative of composite functions is stated as identity (3.56) in H.W. Gould's Tables of Combinatorial Identities, Vol. I and called:

  • Hoppe Form of Generalized Chain Rule

    Let $D_g$ represent differentiation with respect to $g$ and $g=g(x)$. Hence $D^n_x f(g)$ is the $n$-th derivative of $f$ with respect to $x$. The following is valid for $n\geq 1$: \begin{align*} D_x^n f(g)=\sum_{k=1}^nD_g^kf(g)\frac{(-1)^k}{k!}\sum_{j=1}^k(-1)^j\binom{k}{j}g^{k-j}D_x^ng^j\tag{1} \end{align*}

Here we have $g(x)=\sqrt{1+x}$. The right-most part of (1) is \begin{align*} g(x)^{k-j}D_x^ng(x)^j&=(1+x)^{\frac{k-j}{2}}D_x^n(1+x)^{\frac{j}{2}}\\ &=(1+x)^{\frac{k-j}{2}}\left(\frac{j}{2}\right)^{\underline{n}}(1+x)^{\frac{j}{2}-n}\\ &=(1+x)^{\frac{k}{2}-n}\left(\frac{j}{2}\right)^{\underline{n}}\tag{2}\\ \end{align*} We obtain with $g(x)=\sqrt{1+x}$ from (1) and (2): \begin{align*} \color{blue}{D_x^n f\left(\sqrt{1+x}\right) =\sum_{k=1}^n(1+x)^{\frac{k}{2}-n}D_g^kf(g)\frac{(-1)^k}{k!}\sum_{j=1}^k(-1)^j\binom{k}{j}\left(\frac{j}{2}\right)^{\underline{n}}} \end{align*}

Markus Scheuer
  • 112,413