I'm trying to prove this triangle inequality where $A \triangle B = A \cup B - A \cap B$ $$ \frac{|A \triangle B|}{|A| + |B|} \leq \frac{|A \triangle C|}{|A| + |C|} + \frac{|B \triangle C|}{|B| + |C|} $$
I came up with this and it doesn't work. $$ \frac{|A \triangle C|}{|A| + |C|} + \frac{|B \triangle C|}{|B| + |C|} \geq \frac{|A \triangle C| + |B \triangle C|}{|A \cap B| + |C|} \geq \frac{|A \triangle C \cup B \triangle C|}{|A \cap B| + |C|} $$
Any help would be appreaciated.
I just found it doesn't satisfy the triangle inequality, for example when A={0}, B={1}, C={0, 1}, 1 > 1/3 + 1/3. This post can be closed.