Let $F : Gl_n(\mathbb{R}) \rightarrow Gl_n(\mathbb{R})$ is given by $a \mapsto a^{-1}$ Show that the Frechet derivative is given by $D_A F(h) = -a^{-1} h a^{-1}$.
Work done so far:
\begin{align*} ||F(u_0 + h) - f(u_0) + u_0^{-1}hu_0^{-1}|| &= || \Sigma_{k = 0}^{\infty}(-1)^k(u_0^{-1}h)^ku_0^{-1} - u_0^{-1} + u_0^{-1}hu_0^{-1}|| \\ &= ||\Sigma_{k \geq 2} (-1)^k(u_0^{-1}h)^ku_0^{-1}|| \end{align*}
I am not sure the last element approaches zero as h goes to zero. If someone could explain that part.