Let $(X,\mathcal{B}, \mu)$ be a measure space. Then for $0< p < \infty$ by definition
$L^{p,\infty}(X,\mathcal{B}, \mu)$ is the class of all measureable functions $f$ such that
\begin{eqnarray*} \|f\|_{p,\infty} &:=& \text{inf}\{c > 0: d_{f}(\alpha)\leq \frac{c^{p}}{\alpha^{p}}\text{ for all }\alpha > 0\}\\ &=& \text{sup}\{\gamma d_{f}(\gamma)^{\frac{1}{p}}:\gamma > 0\} \end{eqnarray*} where $$d_{f}(\alpha) = \mu(\{x\in X:|f(x)| > \alpha\})$$
I'm trying to verify that $\|\cdot\|_{p,\infty}$ is a quasi-norm on $L^{p,\infty}$.
The non-trivial thing to check is that for all $f,g\in L^{p,\infty}(X,\mathcal{B}, \mu)$, we have $\|f + g\|_{p,\infty} \leq c_{p}(\|f\|_{p,\infty} + \|g\|_{p,\infty})$, where $c_{p} = \text{max}\{2,2^{\frac{1}{p}}\}$.
For $1\leq p < \infty$, I was able to show that $\|f + g\|_{p,\infty} \leq 2(\|f\|_{p,\infty} + \|g\|_{p,\infty})$ using the supremum definition.
For $0 < p < 1$, I need to show that $\|f + g\|_{p,\infty} \leq 2^{\frac{1}{p}}(\|f\|_{p,\infty} + \|g\|_{p,\infty})$, but I'm stuck.
The idea is supposed to be to use the following property of $d_{f}$:
$$d_{f + g}(\alpha + \beta)\leq d_{f}(\alpha) + d_{g}(\beta)$$
which implies in particular that
$$d_{f + g}(\alpha)\leq d_{f}\left(\frac{\alpha}{2}\right) + d_{g}\left(\frac{\alpha}{2}\right)$$
Can anyone help me finish the proof? Thanks in advance!