Let $$S_n=a_1a_2+a_2a_3+\cdots+a_na_1$$ If $a_i=\pm 1$, can $S_{28}=S_{30}=0$?
My approach: Start from small $n$ if we can see a pattern
For $n=1$:
$S_1=a_1=±1 \neq0$
For $n=2$:
$S_2=a_1a_2+a_2a_1=2a_1a_2=±2 \neq0$
For $n=3$:
$S_3=a_1a_2+a_2a_3+a_3a_1$
Because $a_1a_2$, $a_2a_3$ and $a_3a_1$ are odd numbers and $0$ is an even number, $S_3$ cannot be $0$. (this can be applied to other $S_n$ if $n$ is an odd number)
For $n=4$:
$S_4=a_1a_2+a_2a_3+a_3a_4+a_4a_1=(a_1+a_3)(a_2+a_4)$
However, I can't do the same with $n=6$ and above...