We know that $e^{\pi i} = -1$ because of de Moivre's formula. ($e^{\pi i} = \cos \pi + i\sin \pi = -1).$
Suppose we square both sides and get $e^{2\pi i} = 1$(which you also get from de Moivre's formula), then shouldn't $2\pi i=0$? What am I missing here?
Just because $f(x) = f(y)$ doesn't mean that $x=y$.
– MJD May 21 '13 at 01:19