Continuing from what others said....
$$sin(5^{\circ})sin(55^{\circ})sin(65^{\circ})=\frac{sin(15^{\circ})}{4}$$
$$cos(30^{\circ})=1-2sin^{2}(15^{\circ})$$
$$2sin^{2}(15^{\circ})=1-cos(30^{\circ})$$
$$2sin^{2}(15^{\circ})=1-cos(30^{\circ})$$
$$2sin^{2}(15^{\circ})=1-\frac{\sqrt3}{2}$$
$$2sin^{2}(15^{\circ})=\frac{2-\sqrt3}{2}$$
$$sin^{2}(15^{\circ})=\frac{2-\sqrt3}{4}$$
$$sin(15^{\circ})=\frac{\sqrt{2-\sqrt3}}{2}=\frac{\sqrt{\biggl(\sqrt\frac{1}{2}-\sqrt\frac{3}{2}\biggr)^{2}}}{2}$$
$$=\frac{\biggr(\sqrt\frac{3}{2}-\sqrt\frac{1}{2}\biggl)}{2}\ \ (as\ sin(15^{\circ})\ is\ always\ positive)$$
$$\Rightarrow \frac{sin(15^{\circ})}{4}=\frac{\biggr(\sqrt\frac{3}{2}-\sqrt\frac{1}{2}\biggl)}{8}=\biggr(\frac{\sqrt3-1}{8\sqrt2}\biggl)=\biggr(\frac{\sqrt6-\sqrt2}{16}\biggl)$$
$$\Rightarrow\frac{A\sqrt{B}+C\sqrt{D}}{E}=\biggr(\frac{1\sqrt6-1\sqrt2}{16}\biggl)$$
1 and-1 are integers, 2 and 6 are natural numbers which is not divisible by square of any prime number and 16 is a natural number.
So,
$$A+B+C+D+E=1+6-1+2+16=24$$