Can you give two numbers $x,y\in\mathbb{Q}$ such that ${ x }^{ 4 }+{ y }^{ 2 }=1$?
I don't know if exists or not. I derived this equation questioning that if $\sin { \alpha } ={ x }^{ 2 }$ for $x\in \mathbb{Q}$ then for which $\alpha$, $\cos{ \alpha }=y$ and $y\in \mathbb{Q}$?
Edit: $x,y\neq0$