If the sequence converges to $L$, taking the limit on both sides of the recurrence shows that
$$L=\frac1{4-3L}\,,$$
or $3L^2-4L+1=0$. The quadratic factors nicely: $(3L-1)(L-1)=0$, so the only possible limits are $L=\frac13$ and $L=1$.
Clearly the sequence is undefined if $a_1=\frac43$ and constant if $a_1=\frac13$ or $a_1=1$.
- If $a_k<1$, then $1<4-3a_k$, and $0<a_{k+1}<1$.
- If $a_k>\frac43$, then $a_{k+1}<0$, so $0<a_{k+2}<1$.
- If $1<a_k<\frac43$, let $r=a_k-1$; then $0<3r<1$, so $$a_{k+1}=\frac1{4-3a_k}=\frac1{1-3r}=\sum_{n\ge 0}(3r)^n>1+3r>a_k\,.$$ The sequence cannot have a limit in $\left(1,\frac43\right]$, so either it hits $\frac43$ and dies, or $a_\ell>\frac43$ for some $\ell>k$, and then $a_n\in(0,1)$ for all $n\ge\ell+2$.
Thus, if $a_1$ actually generates an infinite, non-constant sequence, that sequence ends up in $(0,1)$. What happens there?
- If $\frac13<a_k<1$, let $r=a_k-\frac13$. Then $$a_{k+1}=\frac1{4-3a_k}=\frac1{3(1-r)}=\frac13\sum_{n\ge 0}r^n\,,$$ so $$a_{k+1}-\frac13=\frac13\sum_{n\ge 1}r^n=\frac{r}3\sum_{n\ge 0}r^n=ra_{k+1}<r=a_k-\frac13\,,$$
and $a_{k+1}<a_k$. In this case the sequence must converge to $\frac13$.
- If $0<a_k<\frac13$, let $r=\frac13-a_k$. Then $$a_{k+1}=\frac1{4-3a_k}=\frac1{3(1+r)}=\frac13\sum_{n\ge 0}(-1)^nr^n\,,$$ so $$\begin{align*}\frac13-a_{k+1}&=\frac13-\left(\frac13+\frac13\sum_{n\ge 1}(-1)^nr^n\right)=\frac13\sum_{n\ge 0}(-1)^nr^{n+1}\\&=\frac{r}3\sum_{n\ge 0}(-1)^nr^n=ra_{k+1}<r=\frac13-a_k\,,\end{align*}$$ and $a_{k+1}>a_k$. Again the sequence converges to $\frac13$.
We have now shown that $a_1=1$ yields the constant sequence $a_k=1$ for all $k\ge 1$, and every other initial value yields either a sequence converging to $\frac13$ or one that eventually dies because some $a_k=\frac43$. It only remains to determine for which initial values some $a_k=\frac43$.
Solving $y=\frac1{4-3x}$ for $x$, we find that $x=\frac{4y-1}{3y}=\frac43-\frac1{3y}$. Let $b_1=\frac43$, and for $k\ge 1$ let $b_{k+1}=\frac{4b_k-1}{3b_k}$. It’s easy to show by induction on $k$ that $a_k=\frac43$ if and only if $a_1=b_k$, so $\{b_k:k\ge 1\}$ is the set of initial values that do not yield a convergent sequence, and it only remains to find a closed form for the numbers $b_k$.
If we write $b_k$ as a fraction $\frac{c_k}{d_k}$, then
$$b_{k+1}=\frac{\frac{4c_k}{d_k}-1}{\frac{3c_k}{d_k}}=\frac{4c_k-d_k}{3c_k}\,,$$
so $c_{k+1}=4c_k-d_k$, and $d_{k+1}=3c_k$, with initial conditions $c_1=4$ and $d_1=3$. Then $c_{k+1}-d_{k+1}=c_k-d_k$, so by induction $c_k-d_k=c_1-d_1=1$ for all $k\ge 1$. It follows that $c_{k+1}=d_{k+1}+1=3c_k+1$. Solving the recurrence $c_{k+1}=3c_k+1$ with initial value $c_1=4$ by any standard method, we find that
$$c_k=\frac{3^{k+1}-1}2$$
and hence that
$$d_k=\frac{3^{k+1}-3}2\,,$$
so that
$$b_k=\frac{3^{k+1}-1}{3^{k+1}-3}\,.$$