Let $P(n)=7\mid n^7+7n^3-n$ for integers $n\ge 1$. Then $P(1)$ is true because $1+7-1=7$ is multiple of $7$.
Assume that $P(n)$ is true and $n\in \mathbb{Z}$ and $n\ge 1$. Then $P(n+1)$ is true because;
$n^7+7n^3-n=7m$ for some natural number $m$
So, $$(n+1)^7+7(n+1)^3-(n+1)=...$$
I'm stuck here, and I can't continue the proof.
Can you help?