Note that the quoted identity is not difficult to verify using a
variant of Lagrange Inversion. Introduce
$$T(z) = w = \sqrt{1-4z}$$ so that
$$z = \frac{1}{4} (1-w^2)$$ and
$$dz = -\frac{1}{2} w \; dw$$
Then we seek to compute
$$[z^n] \frac{2^b}{T(z)} (1+T(z))^{-b}
= \frac{1}{2\pi i}
\int_{|z|=\epsilon} \frac{1}{z^{n+1}}
\frac{2^b}{T(z)} (1+T(z))^{-b} \; dz.$$
Using the substitution this becomes
$$- \frac{1}{2\pi i}
\int_{|w-1| = \epsilon} \frac{4^{n+1}}{(1-w^2)^{n+1}}
\frac{2^b}{w} (1+w)^{-b} \frac{1}{2} w \; dw
\\ = - \frac{1}{2\pi i}
\int_{|w-1| = \epsilon}
\frac{4^{n+1}}{(1-w)^{n+1} \times (1+w)^{n+1+b}}
2^{b-1} \; dw
\\ = - \frac{1}{2\pi i}
\int_{|w-1| = \epsilon}
\frac{(-1)^{n+1} 4^{n+1}}{(w-1)^{n+1} \times (1+w)^{n+1+b}}
2^{b-1} \; dw.$$
It follows that the value of the integral is given by
$$(-1)^n 4^{n+1} 2^{b-1}
[(w-1)^n] \frac{1}{(1+w)^{n+1+b}}
\\ = (-1)^n 4^{n+1} 2^{b-1}
[(w-1)^n] \frac{1}{(2+(w-1))^{n+1+b}}
\\ = (-1)^n 4^{n+1} 2^{b-1} \frac{1}{2^{n+1+b}}
[(w-1)^n] \frac{1}{(1+(w-1)/2)^{n+1+b}}
\\ = (-1)^n 2^{2n+b+1} \frac{1}{2^{n+1+b}}
\frac{(-1)^n}{2^n} {n+n+b\choose n+b}
\\= {2n+b\choose n+b}.$$