I am trying to compute $$\int d^Dq \; e^{iq\cdot\left(r-r'\right)}\cos\left(c_L\left|t-t'\right|\left|q\right|\right),$$ that is, the $D$-dimensional inverse Fourier transform of $\cos\left(a\left|q \right|\right),\;a>0$. I am interested in $D=1,2,3$ and am unskilled with distributions. I have computed the $D=1$ case to be $$\pi\delta\left(\left|r-r'\right|-c_L\left|t-t'\right|\right)+\pi\delta\left(\left|r-r'\right|+c_L\left|t-t'\right|\right).$$
Edit: When transformed into spherical coordinates, the integrals become:
$D=1:$ $$2\int_0^{\infty}dq\;\cos\left(\left|r-r'\right|q\right)\cos\left(c_L\left|t-t'\right|q\right)$$ $D=2:$ $$2\pi\int_0^{\infty}dq\;q\,J_0\left(\left|r-r'\right|q\right)\cos\left(c_L\left|t-t'\right|q\right)$$ $D=3:$ $$4\pi\int_0^{\infty}dq\;q\,\sin\left(\left|r-r'\right|q\right)\cos\left(c_L\left|t-t'\right|q\right)$$