Is this a correct way to show that $\sum_{n \geq 0} \frac{n^3}{n!}=5e$ ?
$$S_3 = \sum_{n \geq 0} \frac{n^3}{n!}=\sum_{n \geq 1} \frac{n^2}{(n-1)!} \implies$$
$$S'_3=S_3-e=\sum_{n \geq 1} \frac{n^2-1^2}{(n-1)!}=\sum_{n \geq 2} \frac{n+1}{(n-2)!} \implies$$
$$S'_3-3e=\sum_{n \geq 2} \frac{(n+1)-3}{(n-2)!}=\sum_{n \geq 3} \frac{1}{(n-3)!}=e\implies$$
$$S'_3-3e=e\iff S_3=5e$$
Exploring $ \sum_{n=0}^\infty \frac{n^p}{n!} = B_pe$, particularly $p = 2$. : One of the answers shows how $\sum_{n \geq 0} \frac{n^2}{n!}=2e$ and asserts that $\sum_{n \geq 0} \frac{n^3}{n!}=5e$ can be showed in the same manner of reasoning. Is my "proof" correct?