I am puzzled that you set $\frac{5z}{4z-5}=n$.
Assuming $x \le y \le z$, we have
$$\frac45 \le \frac3x$$
and hence we can conclude that $x \le \frac{15}{4}<4.$ Furthermore, clearly, we need $x > 1$.
Hence $x$ is either $2$ or $3$.
Case $1$:
- If $x=3$,$\frac1y + \frac1z = \frac45-\frac13=\frac7{15}$.
$$15(y+z)=7yz$$
$$7yz-15y-15z=0$$
$$7(7yz-15y-15z)=0$$
$$(7y-15)(7z-15)=225$$
Consider the factors of
\begin{align}
225 &= 1 \times 225 \\
&= 3 \times 75 \\
&= 5 \times 45 \\
&= 9 \times 25 \\
&= 15 \times 15
\end{align}
Since $x=3$, $7y-15 \ge 7x-15 \ge 6$. Also, it is easy to check that $7y-15$ can't take values $9$ or $15$. Hence we conclude that $x \ne 3$.
Hence $x=2$.
Case $2$:
$$\frac1y+\frac1z=\frac45-\frac12=\frac3{10}$$
$$3yz-10y-10z=0$$
$$3(3yz-10y-10z)=0$$
$$(3y-10)(3z-10)=100$$
\begin{align}
100 &= 1 \times 100 \\
&= 2 \times 50 \\
&= 5 \times 20\\
&= 10 \times 10
\end{align}
Note that $3y-10\ge -4$ and $3z-10 \ge -4$.
It is easy to see that $3y-10 \in \{2,5\}$.
Hence $y \in \{4,5\}$.
If $y=4$, $z=20$. If $y=5, z=10.$
Now examine $x=2, y=4$, we have $\frac1x+\frac1y=\frac34$. The assumption of it is of the form of $\frac1n$ is not valid.