2

Please give some hints to solve the differential equation $\frac{dy}{dx}=\frac{1}{x^2+y^2}$ with f(1)=1 in closed form.

Not coming under the usual non homogeneous form or linear form.

Lawrence Mano
  • 2,203
  • 15
  • 17
  • 1
    I don't think that this has a closed form solution. – GDGDJKJ Nov 22 '20 at 06:45
  • 1
    The commnd of Maple dsolve({diff(y(x), x) = 1/(x^2 + y(x)^2), y(1) = 1}, y(x), implicit); produces $${\frac {-{{ Y}{-3/4}\left(1/2\right)}-{{ Y}{1/4}\left(1/2 \right)}}{{{J}{-3/4}\left(1/2\right)}+{{ J}{1/4}\left(1/2 \right)}}}-{\frac {-{{ Y}{-3/4}\left(1/2, \left( y \left( x \right) \right) ^{2}\right)}y \left( x \right) -{{Y}{1/4}\left( 1/2, \left( y \left( x \right) \right) ^{2}\right)}x}{{{ J}{-3/4 }\left(1/2, \left( y \left( x \right) \right) ^{2}\right)}y \left( x \right) +{{ J}{1/4}\left(1/2, \left( y \left( x \right) \right) ^{2}\right)}x}}=0 .$$ – user64494 Nov 22 '20 at 06:47
  • See https://math.stackexchange.com/questions/2835521/limit-of-function for a related problem with further links. – Lutz Lehmann Nov 22 '20 at 07:41

0 Answers0