Let $x_0 = 2003$, and let $x_{n+1} = \frac{1 + x_n}{1 - x_n}$ for $n >= $1. Compute $x_{2019}$
I tried expressing $x_2$, $x_3$, $x_4$.. in terms of previous terms to see if there is a pattern but $n >= 1$ is troubling me. Please help.
Let $x_0 = 2003$, and let $x_{n+1} = \frac{1 + x_n}{1 - x_n}$ for $n >= $1. Compute $x_{2019}$
I tried expressing $x_2$, $x_3$, $x_4$.. in terms of previous terms to see if there is a pattern but $n >= 1$ is troubling me. Please help.
HINT: Note that
$$\begin{align*} x_{n+2}&=\frac{1+x_{n+1}}{1-x_{n+1}}\\ &=\frac{1+\frac{1+x_n}{1-x_n}}{1-\frac{1+x_n}{1-x_n}}\\ &=\frac{1-x_n+1+x_n}{1-x_n-1-x_n}\\ &=-\frac1{x_n}\,. \end{align*}$$
Hint:
Let $x_r=\tan(y_r)$
$$x_{n+1}=\tan(y_{n+1})=\tan\left(\dfrac\pi4+y_n\right)$$
$$\implies\tan(y_{n+r})=\tan(y_n)\text{ if }4\mid r$$
and $$\tan(y_{n+r})=-\dfrac1{\tan(y_n)}\text{ if }r\equiv2\pmod4$$
If you look here, ou will find how to solve the first-order rational difference equation in the more general case.
For $x_0=a$, this would give after simplifications
$$x_n=\frac{a \cos \left(\frac{\pi n}{4}\right)+\sin \left(\frac{\pi n}{4}\right)}{\cos \left(\frac{\pi n}{4}\right)-a \sin \left(\frac{\pi n}{4}\right)}$$