This answer will overlap alot with @Claude_Leibovici 's answer, but also covers the case when the cubic has 3 real roots.
Starting with Nickalls' parameters related to the geometry of the cubic, applied to your cubic:
$$\begin{align*}
\alpha_N &= \dfrac{-b}{3a} = \dfrac{2}{3} \quad \text{(abscissa of inflection point)}\\
\\
\left[\delta(x)\right]^2 &= \dfrac{b^2-3ac}{9a^2} = \alpha_N^2 - \dfrac{c}{3a} = \dfrac{4}{3}x^2+\dfrac{22}{9} \\
&\quad (\alpha\text{ distance squared from inflection point to turning point})\\
\\
y_N(x) &= f(\alpha_N) = \dfrac{2b^3}{27a^2} - \dfrac{bc}{3a} + d = 8x^3-\dfrac{8}{3}x^2-4x-\dfrac{124}{27}\\
&\quad \text{(ordinate of inflection point)}\\
\\
h(x) &= 2a\left[\delta(x)\right]^3 =2\left[\delta(x)\right]^3 = 2\left(\sqrt{\dfrac{4}{3}x^2+\dfrac{22}{9}}\right)^3 \\
&\quad \text{(y distance from inflection point to turning point)} \\
\end{align*}$$
The roots of your cubic, $\alpha_k(x)$, $k \in\{0,1,2\}$, can be expressed as a hyperbolic function of a complex hyperbolic angle, $\psi_k\left(\dfrac{-y_N(x)}{h(x)}\right)$, described in my short write-up here, based off of Nickalls' and Holmes' work:
$$\begin{align*}
\alpha_k(x) &= \begin{cases}
\alpha_N + 2\delta(x)\cosh\left[\dfrac{1}{3}\psi_k\left(\dfrac{-y_N(x)}{h(x)}\right)\right] \quad h(x) \ne 0\\
\\
\lim_{h(x) \to 0} \alpha_N + 2\delta(x)\cosh\left[\dfrac{1}{3}\psi_k\left(\dfrac{-y_N(x)}{h(x)}\right)\right] \\
\\
\quad \quad \quad= \alpha_N + \sqrt[3]{\dfrac{-y_N(x)}{a}}\exp\left[\dfrac{1}{3}\left(i2k\pi\right)\right] \quad h(x) = 0 \\
\end{cases} \\
\end{align*}$$
with
$$\begin{align*}
\psi_k(u) &= i\theta_k(u)+ \phi(u)= \begin{cases}
i(2k+1)\pi + \cosh^{-1}(-u) & u \in \mathbb{R}, u < -1\\
\\
i2k\pi + i\cos^{-1}(u) & u \in \mathbb{R}, -1 \le u \le 1\\
\\
i2k\pi + \cosh^{-1}(u) & u \in \mathbb{R}, u > 1\\
\\
i\left(2k+\dfrac{1}{2}\right)\pi + \sinh^{-1}(-iu) & u \in i\mathbb{R}\\
\end{cases} \\
\end{align*}$$
It's worth noting here that the input argument of $\psi_k(u)$, $u = \dfrac{-y_N(x)}{h(x)}$, is actually a discriminant between the case of 3 real roots and the other cases of 1 real root.
So to find your desired derivative
$$\begin{align*}\dfrac{d}{dx}\alpha_k(x)&= \dfrac{d}{dx}\left(\alpha_N+2\delta(x)\cosh\left[\dfrac{1}{3}\psi_k\left(\dfrac{-y_N(x)}{h(x)}\right)\right]\right)\\
\\
&=2\delta'(x)\cosh\left[\dfrac{1}{3}\psi_k\left(\dfrac{-y_N(x)}{h(x)}\right)\right]\\
\\
&\quad + 2\delta(x)\sinh\left[\dfrac{1}{3}\psi_k\left(\dfrac{-y_N(x)}{h(x)}\right)\right]\dfrac{1}{3}\dfrac{d}{d(-y_N/h)}\psi_k\left(\dfrac{-y_N(x)}{h(x)}\right)\dfrac{d}{dx} \dfrac{-y_N(x)}{h(x)}\\
\\
&=2\delta'(x)\cosh\left[\dfrac{1}{3}\psi_k\left(\dfrac{-y_N(x)}{h(x)}\right)\right]\\
\\
&\quad + 2\delta(x)\sinh\left[\dfrac{1}{3}\psi_k\left(\dfrac{-y_N(x)}{h(x)}\right)\right]\dfrac{1}{3}\psi_k'\left(\dfrac{-y_N(x)}{h(x)}\right)\\
\\
&\quad \quad \cdot \dfrac{y_N(x)h'(x)-h(x)y'_N(x)}{\left[h(x)\right]^2}\\
\\
\end{align*}$$
At this point, the computation of $\delta'(x)$, $y'_N(x)$, and $h'(x)$ should be fairly straightforward.
The derivative of the complex hyperbolic angle $\psi_k(u)$ is
$$\begin{align*}
\psi_k'(u) &= \begin{cases}
\dfrac{-1}{\sqrt{u^2-1}} & u \in \mathbb{R}, u < -1\\
\\
\dfrac{-i}{\sqrt{1-u^2}} & u \in \mathbb{R}, -1 \le u \le 1\\
\\
\dfrac{1}{\sqrt{u^2-1}} & u \in \mathbb{R}, u > 1\\
\\
\dfrac{-i}{\sqrt{1-u^2}} & u \in i\mathbb{R}\\
\end{cases} \\
\end{align*}$$
Then all that's needed is substitution of all of those functions of $x$ into the expression for $\alpha_k'(x), k \in \{0,1,2\}$.
If you don't want to use the hyperbolic function expression for the cubic roots, then from Nickalls' 1993 paper, you can go with
$$\begin{align*}\alpha_0(x) &= \alpha_N + \sqrt[3]{\dfrac{1}{2}\left(-y_N(x)+\sqrt{\left[y_N(x)\right]^2-\left[h(x)\right]^2}\right)} + \sqrt[3]{\dfrac{1}{2}\left(-y_N(x)-\sqrt{\left[y_N(x)\right]^2-\left[h(x)\right]^2}\right)}\\
\\
\alpha_{1,2}(x) &= \alpha_N - \dfrac{1}{2}\alpha_0(x) \pm i\dfrac{\sqrt{3}}{2}\sqrt{\left[\alpha_0(x)\right]^2-4\left[\delta(x)\right]^2}\\
\end{align*}$$
So computing your desired derivatives:
$$\begin{align*}\alpha'_0(x) &= \dfrac{1}{3}\dfrac{\dfrac{1}{2} \left(-y'_N(x) + \dfrac{y_N(x)y'_N(x)-h(x)h'(x)}{\sqrt{\left[y_N(x)\right]^2-\left[h(x)\right]^2}}\right)}{\left[\sqrt[3]{\dfrac{1}{2}\left(-y_N(x)+\sqrt{\left[y_N(x)\right]^2-\left[h(x)\right]^2}\right)}\right]^2} \\
\\
&\quad + \dfrac{1}{3}\dfrac{\dfrac{1}{2} \left(-y'_N(x) - \dfrac{y_N(x)y'_N(x)-h(x)h'(x)}{\sqrt{\left[y_N(x)\right]^2-\left[h(x)\right]^2}}\right)}{\left[\sqrt[3]{\dfrac{1}{2}\left(-y_N(x)-\sqrt{\left[y_N(x)\right]^2-\left[h(x)\right]^2}\right)}\right]^2} \\
\\\end{align*}$$
$$\begin{align*}\alpha'_{1,2}(x) &= -\dfrac{1}{2} \alpha'_0(x)\pm i\dfrac{\sqrt{3}}{2}\dfrac{\alpha_0(x)\alpha'_0(x) -4\delta(x)\delta'(x)}{\sqrt{\left[\alpha_0(x)\right]^2-4\left[\delta(x)\right]^2}}\\
\end{align*}$$
Again, all that's needed is substitution of all of those functions of $x$ into the expression for $\alpha_k'(x), k \in \{0,1,2\}$.