$\langle a_a, a_a \rangle = \begin{cases} \frac{1}{9}, & \text{if $a$ $\ne$ $a$}\
\end{cases}$
$\langle a_a, a_a \rangle = \begin{cases} \frac{1}{9}, & \text{if $a$ $\ne$ $a$}\
\end{cases}$
To begin with, let us consider the linear combination \begin{align*} \alpha_{1}a_{1} + \alpha_{2}a_{2} + \ldots + \alpha_{k}a_{k} = 0 \end{align*} If we take the inner product of such linear combination with $a_{1}$ we get the equation \begin{align*} 2\alpha_{1}b + \alpha_{2} + \alpha_{3} + \ldots + \alpha_{k} = 0\\\\ \end{align*} If we apply such inner product to $a_{j}$, where $2\leq j\leq k$, we get the following system of equations: \begin{align*} \begin{bmatrix} 2b & 1 & \cdots & 1\\ 1 & 2b & \cdots & 1\\ \vdots & \vdots & \ddots & \vdots\\ 1 & 1 & \cdots & 2b \end{bmatrix} \begin{bmatrix} \alpha_{1}\\ \alpha_{2}\\ \vdots\\ \alpha_{k} \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ \vdots\\ 0 \end{bmatrix} \end{align*} Such system of linear equations has only the trivial solution iff the determinant of the coefficient matrix is different from zero. Based on such result, we need to determine its value in terms of $b$ and $k$: \begin{align*} \begin{vmatrix} 2b & 1 & \cdots & 1\\ 1 & 2b & \cdots & 1\\ \vdots & \vdots & \ddots & \vdots\\ 1 & 1 & \cdots & 2b \end{vmatrix} = \begin{vmatrix} 2b + k - 1 & 1 & \cdots & 1\\ 2b + k - 1 & 2b & \cdots & 1\\ \vdots & \vdots & \ddots & \vdots\\ 2b + k - 1 & 1 & \cdots & 2b \end{vmatrix} & = (2b + k - 1) \begin{vmatrix} 1 & 1 & \cdots & 1\\ 1 & 2b & \cdots & 1\\ \vdots & \vdots & \ddots & \vdots\\ 1 & 1 & \cdots & 2b \end{vmatrix}\\\\ & =(2b + k - 1) \begin{vmatrix} 1 & 0 & \cdots & 0\\ 1 & 2b - 1 & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 1 & 0 & \cdots & 2b - 1 \end{vmatrix}\\\\ & = (2b+k-1)(2b-1)^{k-1} \neq 0 \end{align*}
and we are done.
Hopefully this helps!