So the question is as follows:
Let $0, \mathbb{{C}}^{n}, \mathbb{{C}}^{\ell}$ and $\mathbb{{C}}^r$ be $\mathbb{{C}}$-vector spaces (where $0$ is the trivial vector space), and let $f_i$, $(i=0,…,3)$, be $\mathbb{{C}}$-linear maps: $$0 \xrightarrow{f_0} \mathbb{{C}}^{n} \xrightarrow{f_1} \mathbb{{C}}^{\ell} \xrightarrow{f_2} \mathbb{{C}}^{r} \xrightarrow{f_3} 0$$ satisfying $\ker f_{i+1} =\operatorname{im} f_i$ for $i=0,1,2$.
Any tips on how to find the value of ${\ell}$?