Define:
$ \left(f*g\right)\left(x\right)=\frac{1}{2\pi}\intop_{-\pi}^{\pi}f\left(t\right)g\left(x-t\right)dt $
I want to prove that $ f*\left(g*h\right)=\left(f*g\right)*h $
I havent really learned double integrals so I used some information I found online and Im not sure that I've change variables correctly. here's what I've tried:
By definition:
$ f*\left(g*h\right)\left(x\right)=\frac{1}{2\pi}\intop_{-\pi}^{\pi}f\left(t\right)\left(g*h\right)\left(x-t\right)dt=\frac{1}{2\pi}\intop_{-\pi}^{\pi}f\left(t\right)\left(\frac{1}{2\pi}\intop_{-\pi}^{\pi}g\left(s\right)h\left(x-t-s\right)ds\right)dt $
$ =\frac{1}{2\pi}\cdot\frac{1}{2\pi}\intop_{-\pi}^{\pi}\intop_{-\pi}^{\pi}f\left(t\right)g\left(s\right)h\left(x-t-s\right)dsdt $
Now change variables :
$ s=u-v,t=v $
so $ dsdt=\begin{vmatrix}\frac{\partial s}{\partial u} & \frac{\partial s}{\partial v}\\ \frac{\partial t}{\partial u} & \frac{\partial t}{\partial v} \end{vmatrix}dudv$
Thus
$ dsdt=\begin{vmatrix}1 & -1\\ 0 & 1 \end{vmatrix}dudv=dudv $
My problem is with the bounderies of the new integral.
Is this correct ? :
$ f*\left(g*h\right)\left(x\right)=\frac{1}{2\pi}\cdot\frac{1}{2\pi}\intop_{-\pi}^{\pi}\intop_{v-\pi}^{v+\pi}f\left(v\right)g\left(u-v\right)h\left(x-u\right)dudv $
$ =\frac{1}{2\pi}\intop_{v+\pi}^{v-\pi}\left(\frac{1}{2\pi}\intop_{-\pi}^{\pi}f\left(v\right)g\left(u-v\right)dv\right)h\left(x-u\right)du $
Feels a bit of a lie because Im integrating over the variable $ v $ while v still appear outside of the $ dv $ integral (in the bounderies of the outside intergral )
If its not correct I'll be glad if someon can show me how to change the variables correctly (namely what to do with the bounderies)
if its true it will solve that problem because $ (f*g) $ is periodic with period $ 2\pi $ according to former assumptions in this discussion, so if I could treat the $ v $ in the integral as a regular constant, that wouldnt bother me since the length of the segment is $ 2\pi $.
Thanks in advance.