Here's a sketch:
Let $\mu_g = \int_{-\pi}^{\pi} g(x) \,dx$. Fix $\epsilon > 0$. Since $f$ is continuous, it's also uniformly continuous, so let $n$ be big enough so that $|f(x) - f(y)| < \epsilon$ whenever $|x-y| < 2\pi/n$. Now we can write
\begin{align*}
\int_{-\pi}^{\pi} f(x) g(nx) \,dx \ &= \ \frac1n \int_{-n\pi}^{n\pi} f(y/n) g(y) \,dy \ = \ \sum_{j=-n}^{n-2} \frac1n \int_{j\pi}^{(j+2)\pi} f(y/n) g(y) \,dy \\
&= \ \sum_{j=-n}^{n-2} \frac1n \int_{j\pi}^{(j+2)\pi} \Big( f(j\pi/n) \pm \epsilon \Big) g(y) \,dy \ = \ \mu_g \cdot \sum_{j=-n}^{n-2} \frac1n \Big( f(j\pi/n) \pm \epsilon \Big).
\end{align*}
Now the summation can just be recognized as a Riemann sum which converges to $\frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \,dx$ as $n \to \infty$.