I tried :$$\lim_{x\to 0^+}\frac{\ln x}{(1+x)^2}-\ln\left(\frac{x}{1+x}\right)=\lim_{x\to 0^+}\frac{\ln x}{(1+x)^2}-\ln x+\ln (x+1)=\lim_{x\to 0^+}\frac{-x^2\ln x}{(1+x)^2}+\ln(x+1)$$
Here I can use $\ln(x+1)\sim x-\frac{x^2}{2}+\frac{x^3}{3}$. but it seems It doesn't work because I don't know how to simplify $\cfrac{-x^2\ln x}{(1+x)^2}$.