Preparation
Consider the bivariate function $$f(x, y) = \frac{x \cot x - y \cot y}{\cos x - \cos y}$$ Examine its symmetry and find
\begin{align*}
f(x, y) &= \frac{x \cot x - y \cot y}{\cos x - \cos y} \\
&= \frac{y \cot y - x \cot x}{\cos y - \cos x} = f(y, x)
\end{align*}
Therefore, the double integral's integration region can be divided into two equal parts, i.e.,
\begin{align*}
D = D_1 \cup D_2 &: \left\{(x, y) \mid 0 \leq x \leq \frac{\pi}{2}, 0 \leq y \leq \frac{\pi}{2}\right\} \\
\Downarrow \,& \\
D_1 &: \left\{(x, y) \mid y \leq x \leq \frac{\pi}{2}, 0 \leq y \leq \frac{\pi}{2}\right\} \\
D_2 &: \left\{(x, y) \mid 0 \leq x \leq y, 0 \leq y \leq \frac{\pi}{2}\right\}
\end{align*}
(Not obvious) Now, let's proceed with the change of variables. The transformation is given by
\begin{align*}
\begin{cases}
x &= u + v \\
y &= u - v
\end{cases}
\end{align*}
Then, the bivariate function $f(x, y)$ can be simplified to
\begin{align*}
g(u, v) &= \frac{(u + v) \cot(u + v) - (u - v) \cot(u - v)}{\cos(u + v) - \cos(u - v)} \\
&= \frac{u[\cot(u + v) - \cot(u - v)] + v[\cot(u + v) + \cot(u - v)]}{\cos(u + v) - \cos(u - v)} \\
&= \frac{-2u\sin(v)\cos(v) + 2v\sin(u)\cos(u)}{-2\sin(u)\sin(v)\sin(u + v)\sin(u - v)} \\
&= \frac{\frac{v}{\sin v}\cos u - \frac{u}{\sin u}\cos v}{(\cos u - \cos v)(\cos u + \cos v)}
\end{align*}
Next, let's find the Jacobian determinant of the transformation:
\begin{align*}
\frac{\partial(x, y)}{\partial(u, v)} &= \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial y}{\partial v} \\ \frac{\partial x}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} = -2
\end{align*}
Hence, the absolute value of the Jacobian determinant is $$\left|\frac{\partial(x, y)}{\partial(u, v)}\right| = 2$$
Now, the transformed integration region for $D_2$ becomes
\begin{align*}
D_2 &: \left\{(x, y) \mid 0 \leq x \leq y, 0 \leq y \leq \frac{\pi}{2}\right\} \\
\Downarrow \,& \\
D_3 &: \left\{(u, v) \mid v \leq u \leq \frac{\pi}{2} - v, 0 \leq v \leq \frac{\pi}{4}\right\}
\end{align*}
Construct bivariate functions $P(u, v)$ and $Q(u, v)$ as follows:
\begin{align*}
P &\approx P(u, v) = \frac{u}{2\sin^2u}\ln\left|\frac{\sin(u) - \sin(v)}{\sin(u) + \sin(v)}\right| \\
&= \frac{u}{2\sin^2u}\ln\left|\frac{\cot\left(\frac{u + v}{2}\right)}{\cot\left(\frac{u - v}{2}\right)}\right| \\
Q &\approx Q(u, v) = -\frac{v}{2\sin^2v}\ln\left|\frac{\sin(u) - \sin(v)}{\sin(u) + \sin(v)}\right| \\
&= -\frac{v}{2\sin^2v}\ln\left|\frac{\cot\left(\frac{u + v}{2}\right)}{\cot\left(\frac{u - v}{2}\right)}\right|
\end{align*}
Therefore,
\begin{align*}
\frac{\partial P}{\partial v} &= -\frac{u}{2\sin^2u}\left[\frac{\cos(v)}{\sin(u) - \sin(v)} + \frac{\cos(v)}{\sin(u) + \sin(v)}\right] \\
&= -\frac{u\cos v}{2\sin^2u}\left[\frac{2\sin(u)}{\sin^2(u) - \sin^2(v)}\right] \\
&= -\frac{u\cos v}{\sin u}\cdot\frac{1}{\sin^2(u) - \sin^2(v)} \\
&= \frac{u\cos v}{\sin u}\cdot\frac{1}{\cos^2(u) - \cos^2(v)} \\
\frac{\partial Q}{\partial u} &= -\frac{v}{2\sin^2v}\left[\frac{\cos(u)}{\sin(u) - \sin(v)} - \frac{\cos(u)}{\sin(u) + \sin(v)}\right] \\
&= -\frac{v\cos u}{2\sin^2v}\left[\frac{2\sin(v)}{\sin^2(u) - \sin^2(v)}\right] \\
&= -\frac{v\cos u}{\sin v}\cdot\frac{1}{\sin^2(u) - \sin^2(v)} \\
&= \frac{v\cos u}{\sin v}\cdot\frac{1}{\cos^2(u) - \cos^2(v)}
\end{align*}
Thus,
$$\frac{\partial Q}{\partial u} - \frac{\partial P}{\partial v} = \frac{\frac{v}{\sin v}\cos u - \frac{u}{\sin u}\cos v}{(\cos u - \cos v)(\cos u + \cos v)} = g(u, v)$$
Now, Examine the continuity of the bivariate functions $P, Q$ and their partial derivatives $\frac{\partial P}{\partial v}, \frac{\partial Q}{\partial u}$ in the region $D_3$.
When $v = (2k - 1)\pi - u$ or $v = 2k\pi + u$ (where $k \in \mathbb{Z}$), $\frac{\cot\left(\frac{u + v}{2}\right)}{\cot\left(\frac{u - v}{2}\right)} = 0$.
- For $v = (2k - 1)\pi + u$ (where $k \in \mathbb{Z}$), $\cot\left(\frac{u - v}{2}\right) = 0$.
- Only the case $k = 0$ with $v = u$ falls into $D_3$.
When $u = k\pi$ (where $k \in \mathbb{Z}$), $\sin u = 0$.
- Only the case $k = 0$ with $(u, v) = (0, 0)$ falls into $D_3$.
When $v = k\pi$ (here $k \in \mathbb{Z}$, $\sin v = 0$.
- Only the case $k = 0$ with $v = 0$ falls into $D_3$.
In summary, define the set of points where $P, Q$ are discontinuous in $D_3$ as region $D_4$:
\begin{align*}
D_4 = D_5 \cup D_6 & \\
\Downarrow \quad & \\
D_5 & : \left\{(u, v) \mid v = 0, 0 < u \leq \frac{\pi}{2}\right\} \\
D_6 & : \left\{(u, v) \mid u = v, 0 \leq u \leq \frac{\pi}{4}\right\}
\end{align*}
It's worth noting that due to
\begin{align*}
\lim_{v \to 0} P(u, v) &= \lim_{v \to 0} \frac{u}{2\sin^2u}\ln\left|\frac{\sin(u) - \sin(v)}{\sin(u) + \sin(v)}\right| = 0 \\
\lim_{v \to 0} Q(u, v) &= \lim_{v \to 0} -\frac{v}{2\sin^2v}\ln\left|\frac{\sin(u) - \sin(v)}{\sin(u) + \sin(v)}\right| = \frac{1}{\sin u}
\end{align*}
On region $D_5$, both $P$ and $Q$ are bounded and belong to removable discontinuity regions. So, we can supplement the definition to make them continuous on $D_5$. Let's denote the supplemented bivariate functions as $P_0$ and $Q_0$:
\begin{align*}
P_0(u, 0) &= 0 \\
Q_0(u, 0) &= \frac{1}{\sin u}
\end{align*}
To ensure the continuity for the future application of Green's theorem for line integrals, we also need to construct an integral region $D_{\varepsilon}$ with a parameter $\varepsilon$ as follows:
$$D_{\varepsilon} : \left\{(u, v) \mid v + \frac{\varepsilon}{2} \leq u \leq \frac{\pi}{2} - v, 0 \leq v \leq \frac{\pi - \varepsilon}{4}\right\}$$
Certainly, it can be verified that $\frac{\partial Q_0}{\partial u}$ and $\frac{\partial P_0}{\partial v}$ are both continuous on the integral region $D_{\varepsilon}$, making the future application of Green's theorem for line integrals reasonable.
(Green's theorem for line integrals) If the bivariate functions $P_0, Q_0$ and their partial derivatives $\frac{\partial Q_0}{\partial u}$, $\frac{\partial P_0}{\partial v}$are continuous on the bounded closed region $D_{\varepsilon}$, then
\begin{align*}
\iint_{D_{\epsilon}}\left(\frac{\partial Q_0}{\partial u} - \frac{\partial P_0}{\partial v}\right)dudv &= \oint_{\Gamma} P_0(u, v)dudv + Q_0(u, v)dv
\end{align*}
where $\Gamma$ is the boundary closed curve enclosing the region $D_{\varepsilon}$ and counterclockwise direction is taken as the positive direction.
Now, a few indefinite and definite integrals are presented for reference (proofs are left to the reader):
\begin{align*}
\int \frac{\ln x}{(1 + x)^2}dx &= \ln(x) - \frac{\ln(x)}{1 + x} - \ln(1 + x) + C \\
\int \frac{x\ln x}{(1 - x^2)^2}dx &= \frac{x^2\ln x}{2(1 - x^2)} + \frac{\ln|1 - x^2|}{4} + C \\
\int_0^1 \frac{\ln x}{1 - x^2}dx &= -\frac{\pi^2}{8} \\
\int_1^{\infty} \frac{\ln x}{x^2 - 1}dx &= \frac{1}{2}\int_1^{\infty}\left(\frac{1}{x - 1} - \frac{1}{x + 1}\right)\ln x dx = \frac{\pi^2}{8}
\end{align*}
With all the preparation done, let's move on to the main topic.
[![image 1][1]][1]
\begin{align*} \bbox[#EFF,15px,border:2px solid blue]{ \begin{split} I&=\int_0^{\frac{\pi}{2}}\!\!\int_0^{\frac{\pi}{2}}f(x,y)\mathrm{d}x\mathrm{d}y=2\int_0^{\frac{\pi}{2}}\!\!\int_y^{\frac{\pi}{2}}f(x,y)\mathrm{d}x\mathrm{d}y\\ &=2\int_0^{\frac{\pi}{4}}\!\!\int_v^{\frac{\pi}{2}-v}g(u,v)\left|\dfrac{\partial(x,y)}{\partial(u,v)}\right|\mathrm{d}u\mathrm{d}v\quad\,\left( \begin{split} x=u+v\\ y=u-v \end{split}\right)\\ &=4\int_0^{\frac{\pi}{4}}\!\!\int_{v}^{\frac{\pi}{2}-v}g(u,v)\mathrm{d}u\mathrm{d}v\\ &=4\lim\limits_{\varepsilon\to0}\int_0^{\frac{\pi-\varepsilon}{4}}\!\!\int_{v+\frac{\varepsilon}{2}}^{\frac{\pi}{2}-v}g(u,v)\mathrm{d}u\mathrm{d}v\\ &=4\lim\limits_{\varepsilon\to0}\kern{23pt}\bigcirc\kern{-29.5pt}\int\limits_{\overline{AB}+\overline{BC}+\overline{CA}}P_0(u,v)\mathrm{d}u+Q_0(u,v)\mathrm{d}v\\ \end{split} } \end{align*}\
[![image 2][2]][2]
\begin{align*} I_1&=\lim\limits_{\varepsilon\to0}\kern{6pt}\bigcirc\kern{-12pt}\int\limits_{\overline{AB}}P_0(u,v)\mathrm{d}u+Q_0(u,v)\mathrm{d}v\\ I_2&=\lim\limits_{\varepsilon\to0}\kern{6pt}\bigcirc\kern{-12pt}\int\limits_{\overline{BC}}P_0(u,v)\mathrm{d}u+Q_0(u,v)\mathrm{d}v\\ I_3&=\lim\limits_{\varepsilon\to0}\kern{6pt}\bigcirc\kern{-12pt}\int\limits_{\overline{CA}}P_0(u,v)\mathrm{d}u+Q_0(u,v)\mathrm{d}v\\ \end{align*}\
Calculate curve integralI_1I_1:Since the line segment\overset{,}{\underset{,}{\overline{AB}}}\overset{,}{\underset{,}{\overline{AB}}}’sparametric equationis\begin{align*} \left\{ \begin{split} u&=t\\ v&=0 \end{split} \right.\quad\left(\tfrac{\varepsilon}{2}\leqslant\,t\leqslant\tfrac{\pi}{2}\right) \end{align*}\\begin{align*} \left\{ \begin{split} u&=t\\ v&=0 \end{split} \right.\quad\left(\tfrac{\varepsilon}{2}\leqslant\ ,t\leqslant\tfrac{\pi}{2}\right) \end{align*}\ but\begin{align*} I_1&=\lim\limits_{\varepsilon\to0}\kern{6pt}\bigcirc\kern{-12pt}\int\limits_{\overline{AB}}P_0(u,v)\mathrm{d}u+Q_0(u,v)\mathrm{d}v\\ &=\lim\limits_{\varepsilon\to0}\left[\int_{\frac{\varepsilon}{2}}^{\frac{\pi}{2}}P_0(t,0)\mathrm{d}t+\int_{\frac{\varepsilon}{2}}^{\frac{\pi}{2}}Q_0(t,0)\mathrm{d}(0)\right]\\ &=0 \end{align*}\\begin{align*} I_1&=\lim\limits_{\varepsilon\to0}\kern{6pt}\bigcirc\kern{-12pt}\int\limits_{\overline{AB}}P_0(u,v)\ mathrm{d}u+Q_0(u,v)\mathrm{d}v\\ &=\lim\limits_{\varepsilon\to0}\left[\int_{\frac{\varepsilon}{2}}^ {\frac{\pi}{2}}P_0(t,0)\mathrm{d}t+\int_{\frac{\varepsilon}{2}}^{\frac{\pi}{2}}Q_0( t,0)\mathrm{d}(0)\right]\\ &=0 \end{align*}\ ② Calculate curve integralI_2I_2:Since the line segment\overset{,}{\underset{,}{\overline{BC}}}The parametric equation of \overset{,}{\underset{,}{\overline{BC}}} is\begin{align*} \left\{ \begin{split} u&=t\\ v&=\dfrac{\pi}{2}-t \end{split} \right.\quad\left(\tfrac{\pi+\varepsilon}{4}\leqslant\,t\leqslant\tfrac{\pi}{2}\right) \end{align*}\\begin{align*} \left\{ \begin{split} u&=t\\ v&=\dfrac{\pi}{2}-t \end{split} \right.\quad\left(\tfrac {\pi+\varepsilon}{4}\leqslant\,t\leqslant\tfrac{\pi}{2}\right) \end{align*}\ but\begin{align*} I_2&=\lim\limits_{\varepsilon\to0}\kern{6pt}\bigcirc\kern{-12pt}\int\limits_{\overline{BC}}P_0(u,v)\mathrm{d}u+Q_0(u,v)\mathrm{d}v\\ &=\lim\limits_{\varepsilon\to0}\left[\int_{\frac{\pi}{2}}^{\frac{\pi+\varepsilon}{4}}P_0\left(t,\tfrac{\pi}{2}-t\right)\mathrm{d}t\right.\\ &\qquad\qquad\qquad\,+\left.\int_{\frac{\pi}{2}}^{\frac{\pi+\varepsilon}{4}}Q_0\left(t,\tfrac{\pi}{2}-t\right)\mathrm{d}\left(\tfrac{\pi}{2}-t\right)\right]\\ &=\int_{\frac{\pi}{2}}^{\frac{\pi}{4}}P_0\left(t,\tfrac{\pi}{2}-t\right)\mathrm{d}t\\ &\qquad\qquad\qquad\,+\int_{\frac{\pi}{2}}^{\frac{\pi}{4}}Q_0\left(t,\tfrac{\pi}{2}-t\right)\mathrm{d}\left(\tfrac{\pi}{2}-t\right)\\ &=-\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}P_0\left(t,\tfrac{\pi}{2}-t\right)\mathrm{d}t+\int_{0}^{\frac{\pi}{4}}Q_0\left(\tfrac{\pi}{2}-\tau,\tau\right)\mathrm{d}\tau\\ &=-\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}\dfrac{t}{2\sin^2t}\ln\left|\dfrac{\sin(t)-\cos(t)}{\sin(t)+\cos(t)}\right|\mathrm{d}t\\ &\qquad\qquad+\int_{0}^{\frac{\pi}{4}}\left[-\dfrac{\tau}{2\sin^2\tau}\ln\left|\dfrac{\sin(\tau)-\cos(\tau)}{\sin(\tau)+\cos(\tau)}\right|\,\right]\mathrm{d}\tau\\ &=-\dfrac{1}{2}\int_{0}^{\frac{\pi}{2}}\dfrac{t}{\sin^2t}\ln\left|\dfrac{\sin\,\!t-\cos\,\!t}{\sin\,\!t+\cos\,\!t}\right|\mathrm{d}t\\ &=\int_{0}^{\frac{\pi}{2}}\dfrac{t}{2\sin^2t}\ln\left|\cot\left(t-\dfrac{\pi}{4}\right)\right|\mathrm{d}t\\ \end{align*}\\begin{align*} I_2&=\lim\limits_{\varepsilon\to0}\kern{6pt}\bigcirc\kern{-12pt}\int\limits_{\overline{BC}}P_0(u,v)\ mathrm{d}u+Q_0(u,v)\mathrm{d}v\\ &=\lim\limits_{\varepsilon\to0}\left[\int_{\frac{\pi}{2}}^ {\frac{\pi+\varepsilon}{4}}P_0\left(t,\tfrac{\pi}{2}-t\right)\mathrm{d}t\right.\\ &\qquad\qquad \qquad\,+\left.\int_{\frac{\pi}{2}}^{\frac{\pi+\varepsilon}{4}}Q_0\left(t,\tfrac{\pi}{2} -t\right)\mathrm{d}\left(\tfrac{\pi}{2}-t\right)\right]\\ &=\int_{\frac{\pi}{2}}^{ \frac{\pi}{4}}P_0\left(t,\tfrac{\pi}{2}-t\right)\mathrm{d}t\\ &\qquad\qquad\qquad\,+\ int_{\frac{\pi}{2}}^{\frac{\pi}{4}}Q_0\left(t,\tfrac{\pi}{2}-t\right)\mathrm{d}\ left(\tfrac{\pi}{2}-t\right)\\ &=-\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}P_0\left (t,\tfrac{\pi}{2}-t\right)\mathrm{d}t+\int_{0}^{\frac{\pi}{4}}Q_0\left(\tfrac{\pi} {2}-\tau,\tau\right)\mathrm{d}\tau\\ &=-\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \dfrac{t}{2\sin^2t}\ln\left|\dfrac{\sin(t)-\cos(t)}{\sin(t)+\cos(t)}\right|\mathrm {d}t\\ &\qquad\qquad+\int_{0}^{\frac{\pi}{4}}\left[-\dfrac{\tau}{2\sin^2\tau}\ln \left|\dfrac{\sin(\tau)-\cos(\tau)}{\sin(\tau)+\cos(\tau)}\right|\,\right]\mathrm{d}\tau \\ &=-\dfrac{1}{2}\int_{0}^{\frac{\pi}{2}}\dfrac{t}{\sin^2t}\ln\left|\dfrac{ \sin\,\!t-\cos\,\!t}{\sin\,\!t+\cos\,\!t}\right|\mathrm{d}t\\ &=\int_{0 }^{\frac{\pi}{2}}\dfrac{t}{2\sin^2t}\ln\left|\cot\left(t-\dfrac{\pi}{4}\right)\ right|\mathrm{d}t\\ \end{align*}\ Looking forward to it, looking forward to it, I have encountered the problem of finding a function of one variabledefective integralUse the substitution method (not easy to think of) to make transformations w=\tan(\tfrac{\pi}{4}-t)w=\tan(\tfrac{\pi}{4}-t) , then\begin{alignat*}{4} &&w&=\tan\left(\tfrac{\pi}{4}-t\right)\\ \Rightarrow\quad&& w&=\frac{1-\tan\,\!t}{1+\tan\,\!t}\\ \Rightarrow\quad&& t&=\tfrac{\pi}{4}-\arctan\,\!w\\ \Rightarrow\quad&& \tan\,\!t&=\frac{1-w}{1+w}\\ \Rightarrow\quad&& {\mathrm{d}}t&=-\dfrac{1}{1+w^2}{\mathrm{d}}w\\ \end{alignat*}\\begin{alignat*}{4} &&w&=\tan\left(\tfrac{\pi}{4}-t\right)\\ \Rightarrow\quad&& w&=\frac{ 1-\tan\,\!t}{1+\tan\,\!t}\\ \Rightarrow\quad&& t&=\tfrac{\pi}{4}-\arctan\,\!w \\ \Rightarrow\quad&& \tan\,\!t&=\frac{1-w}{1+w}\\ \Rightarrow\quad&& {\mathrm{d}}t&=- \dfrac{1}{1+w^2}{\mathrm{d}}w\\ \end{alignat*}\ According tomultiple angle formula, universal formula, we have< /span>\begin{align*} \dfrac{1}{2\sin^2t}&=\dfrac{1}{1-\cos(2t)}=\dfrac{1}{1-\frac{1-\tan^2t}{1+\tan^2t}}\\ &=\dfrac{1+\tan^2t}{2\tan^2t}=\dfrac{1+\left(\frac{1-w}{1+w}\right)^2}{2\left(\frac{1-w}{1+w}\right)^2}\\ &=\frac{1+w^{2}}{\left(1-w\right)^{2}} \end{align*}
\begin{align*} \dfrac{1}{2\sin^2t}&=\dfrac{1}{1-\cos(2t)}=\dfrac{1}{1-\frac{1-\ tan^2t}{1+\tan^2t}}\\ &=\dfrac{1+\tan^2t}{2\tan^2t}=\dfrac{1+\left(\frac{1-w }{1+w}\right)^2}{2\left(\frac{1-w}{1+w}\right)^2}\\ &=\frac{1+w^{2} }{\left(1-w\right)^{2}} \end{align*}\ therefore\begin{align*} I_2 &=\int_{0}^{\frac{\pi}{2}}\dfrac{t}{2\sin^2t}\ln\left|\cot\left(t-\dfrac{\pi}{4}\right)\right|\mathrm{d}t\\ &=\int_{1}^{-1}\dfrac{\left(\frac{\pi}{4}-\arctan\,\!w\right)\left(1+w^2\right)\ln\left|\frac{1}{w}\right|}{(1-w)^2}\left(\dfrac{-1}{1+w^2}\right)\mathrm{d}w\\ &=-\int_{-1}^{1}\dfrac{\frac{\pi}{4}-\arctan\,\!w}{(1-w)^2}\ln\left|w\right|\mathrm{d}w\\ &=-\int_{0}^{1}\dfrac{\left(\frac{\pi}{4}-\arctan\,\!w\right)\ln(w)}{(1-w)^2}\mathrm{d}w\\ &\qquad\qquad\qquad-\int_{-1}^0\dfrac{\left(\frac{\pi}{4}-\arctan\,\!w\right)\ln|w|}{(1-w)^2}\mathrm{d}w\\ &=-\int_{0}^{1}\dfrac{\left(\frac{\pi}{4}-\arctan\,\!w\right)\ln(w)}{(1-w)^2}\mathrm{d}w\\ &\qquad\quad-\int_{1}^0\dfrac{\left[\frac{\pi}{4}-\arctan(-\omega)\right]\ln|-\omega|}{(1+\omega)^2}\mathrm{d}(-\omega)\\ &=-\int_{0}^{1}\left[\dfrac{\left(\frac{\pi}{4}-\arctan\,\!w\right)\ln(w)}{(1-w)^2}\right.\\ &\qquad\qquad\qquad\quad\left.+\dfrac{\left(\frac{\pi}{4}+\arctan\,\!w\right)\ln(w)}{(1+w)^2}\right]\mathrm{d}w\\ \end{align*}\\begin{align*} I_2 &=\int_{0}^{\frac{\pi}{2}}\dfrac{t}{2\sin^2t}\ln\left|\cot\left(t -\dfrac{\pi}{4}\right)\right|\mathrm{d}t\\ &=\int_{1}^{-1}\dfrac{\left(\frac{\pi}{ 4}-\arctan\,\!w\right)\left(1+w^2\right)\ln\left|\frac{1}{w}\right|}{(1-w)^2} \left(\dfrac{-1}{1+w^2}\right)\mathrm{d}w\\ &=-\int_{-1}^{1}\dfrac{\frac{\pi} {4}-\arctan\,\!w}{(1-w)^2}\ln\left|w\right|\mathrm{d}w\\ &=-\int_{0}^{1 }\dfrac{\left(\frac{\pi}{4}-\arctan\,\!w\right)\ln(w)}{(1-w)^2}\mathrm{d}w\\ &\qquad\qquad\qquad-\int_{-1}^0\dfrac{\left(\frac{\pi}{4}-\arctan\,\!w\right)\ln|w|}{ (1-w)^2}\mathrm{d}w\\ &=-\int_{0}^{1}\dfrac{\left(\frac{\pi}{4}-\arctan\,\ !w\right)\ln(w)}{(1-w)^2}\mathrm{d}w\\ &\qquad\quad-\int_{1}^0\dfrac{\left[\frac {\pi}{4}-\arctan(-\omega)\right]\ln|-\omega|}{(1+\omega)^2}\mathrm{d}(-\omega)\\ & =-\int_{0}^{1}\left[\dfrac{\left(\frac{\pi}{4}-\arctan\,\!w\right)\ln(w)}{(1- w)^2}\right.\\ &\qquad\qquad\qquad\quad\left.+\dfrac{\left(\frac{\pi}{4}+\arctan\,\!w\right) \ln(w)}{(1+w)^2}\right]\mathrm{d}w\\ \end{align*}\ because
\begin{align*} W_1&=\dfrac{(k-\arctan\,\!w)\ln\,\!w}{(1-w)^2}+\dfrac{(k+\arctan\, \!w)\ln\,\!w}{(1+w)^2}\\ &=\dfrac{2\left(kw^2+k-2w\arctan\,\!w\right) \ln\,\!w}{(1-w)^2(1+w)^2}\\ &=\dfrac{2\left(kw^2-2kw+k+2kw-2w\arctan\ ,\!w\right)\ln\,\!w}{(1-w)^2(1+w)^2}\\ &=\dfrac{2k\ln\,\!w}{( 1+w)^2}+\dfrac{4\left(k-\arctan\,\!w\right)w\ln\,\!w}{(1-w)^2(1+w)^ 2}\\ \end{align*}
So, using the alternative indefinite integral formula, we have
\begin{align*} I_2 &=-\int_{0}^{1}\left[\dfrac{\left(\frac{\pi}{4}-\arctan\,\!w\right)\ ln(w)}{(1-w)^2}\right.\\ &\qquad\qquad\qquad\quad\left.+\dfrac{\left(\frac{\pi}{4}+\ arctan\,\!w\right)\ln(w)}{(1+w)^2}\right]\mathrm{d}w\\ &=-\dfrac{\pi}{2}\int_ {0}^{1}\dfrac{\ln\,\!w}{(1+w)^2}\mathrm{d}w\\ &\qquad\qquad\quad-4\int_{0} ^{1}\dfrac{\left(\frac{\pi}{4}-\arctan\,\!w\right)w\ln\,\!w}{(1-w)^2(1+ w)^2}\mathrm{d}w\\ &=\dfrac{\pi}{2}\ln(2)-4\int_{0}^{1}\dfrac{\left(\frac{ \pi}{4}-\arctan\,\!w\right)w\ln\,\!w}{(1-w^2)^2}\mathrm{d}w\\ &=\dfrac {\pi}{2}\ln(2)-4J\\ \end{align*}
Usingintegration by parts method, we have
\begin{align*} J &=\int_{0}^{1}\dfrac{\left(\frac{\pi}{4}-\arctan\,\!w\right)w\ln\, \!w}{(1-w^2)^2}\mathrm{d}w\\ &=\int_{0}^{1}\left(\frac{\pi}{4}-\arctan \,\!w\right)\mathrm{d}\left[\frac{w^{2}\ln\,\!w}{2\left(1-w^2\right)}+\frac{ \ln(1-w^2)}{4}\right]\\ &=\left.\left\{\left(\frac{\pi}{4}-\arctan\,\!w\right )\left[\frac{w^{2}\ln\,\!w}{2\left(1-w^2\right)}+\frac{\ln(1-w^2)}{4 }\right]\right\}\right|_{0}^{1}\\ &\qquad\quad-\int_{0}^{1}\left[\frac{w^{2}\ln \,\!w}{2\left(1-w^2\right)}+\frac{\ln(1-w^2)}{4}\right]\mathrm{d}\left(\frac {\pi}{4}-\arctan\,\!w\right)\\ &=\dfrac{1}{2}\int_{0}^{1}\left[\frac{w^{2 }\ln\,\!w}{\left(1-w^2\right)(1+w^2)}+\frac{\ln(1-w^2)}{2(1+w^ 2)}\right]\mathrm{d}w \end{align*}
And because of
\begin{align*} W_2&=\frac{w^{2}\ln\,\!w}{\left(1-w^2\right)(1+w^2)}+\frac{\ ln(1-w^2)}{2(1+w^2)}\\ &=\dfrac{2w^2\ln(w)+(1-w^2)\ln(1-w^ 2)}{2(1-w^4)}\\ &=\dfrac{(1+w^2)\ln(w)-(1-w^2)\ln(w)+(1- w^2)\ln(1-w^2)}{2(1-w^2)(1+w^2)}\\ &=\dfrac{\ln\,\!w}{2( 1-w^2)}+\dfrac{\ln(\frac{1-w^2}{w})}{2(1+w^2)} \end{align*}
Furthermore, there are
\begin{align*} 4J &=2\int_{0}^{1}\left[\frac{w^{2}\ln\,\!w}{\left(1-w^2\right )(1+w^2)}+\frac{\ln(1-w^2)}{2(1+w^2)}\right]\mathrm{d}w\\ &=\int_{ 0}^{1}\left[\dfrac{\ln\,\!w}{1-w^2}+\dfrac{\ln\left(\frac{1-w^2}{w}\right )}{1+w^2}\right]\mathrm{d}w\\ &=\int_{0}^{1}\dfrac{\ln\,\!w}{1-w^2} \mathrm{d}w+\int_{0}^{1}\dfrac{\ln\left(\frac{1-w^2}{w}\right)}{1+w^2}\mathrm{d }w\\ &=-\dfrac{\pi^2}{8}+\int_{0}^{1}\dfrac{\ln\left(\frac{1-w^2}{w}\ right)}{1+w^2}\mathrm{d}w\\ &=-\dfrac{\pi^2}{8}+J_1\\ \end{align*}
Use substitution again (not easy to think of) for transformation $w=\dfrac{1-\xi}{1+\xi}$ , then
\begin{align*} J_1 &=\int_{0}^{1}\dfrac{\ln\left(\frac{1-w^2}{w}\right)}{1+w^2} \mathrm{d}w\\ &=\int_{1}^{0}\dfrac{\ln\left(\frac{4\xi}{1-\xi^2}\right)}{1+ \left(\frac{1-\xi}{1+\xi}\right)^2}\mathrm{d}\left(\frac{1-\xi}{1+\xi}\right)\\ &=\int_{1}^{0}\dfrac{\ln\left(\frac{1-\xi^2}{4\xi}\right)}{1+\xi^2}\mathrm{ d}\xi\\ &=\int_{0}^{1}\dfrac{2\ln2}{1+\xi^2}\mathrm{d}\xi-\int_{0}^{1} \dfrac{\ln\left(\frac{1-\xi^2}{\xi}\right)}{1+\xi^2}\mathrm{d}\xi\\ &=\int_{0 }^{1}\dfrac{2\ln2}{1+\xi^2}\mathrm{d}\xi-J_1\\ &=\int_{0}^{1}\dfrac{\ln2}{ 1+\xi^2}\mathrm{d}\xi=\dfrac{\pi}{4}\ln2 \end{align*}
Therefore
\begin{align*} I_2 &=\dfrac{\pi}{2}\ln(2)-4J\ &=\dfrac{\pi}{2}\ln(2)-\left(- \dfrac{\pi^2}{8}+J_1\right)\ &=\dfrac{\pi}{2}\ln(2)-\left[-\dfrac{\pi^2}{8 }+\dfrac{\pi}{4}\ln(2)\right]\ &=\dfrac{\pi^2}{8}+\dfrac{\pi}{4}\ln2 \end{ align*}
Calculate curve integral $I_3$:
Becauseline segment The parametric equation of $\overset{\,}{\underset{\,}{\overline{CA}}}$ is
\begin{align*} \left\{ \begin{split} u&=t\\ v&=t-\dfrac{\varepsilon}{2} \end{split} \right.\quad\left(\tfrac {\epsilon}{2}\leqslant\,t\leqslant\tfrac{\pi+\varepsilon}{4}\right) \end{align*}
but
\begin{align*} I_3&=\lim\limits_{\varepsilon\to0}\kern{6pt}\bigcirc\kern{-12pt}\int\limits_{\overline{CA}}P_0(u,v)\ mathrm{d}u+Q_0(u,v)\mathrm{d}v\\ &=\lim\limits_{\varepsilon\to0}\left[\int_{\frac{\pi+\varepsilon}{4} }^{\frac{\varepsilon}{2}}P_0\left(t,t-\tfrac{\varepsilon}{2}\right)\mathrm{d}t\right.\\ &\qquad\qquad \qquad\,+\left.\int_{\frac{\pi+\varepsilon}{4}}^{\frac{\varepsilon}{2}}Q_0\left(t,t-\tfrac{\varepsilon}{ 2}\right)\mathrm{d}\left(t-\tfrac{\varepsilon}{2}\right)\right]\\ &=\lim\limits_{\varepsilon\to0}\left[\int_ {\frac{\pi}{4}}^{\frac{\varepsilon}{4}}P_0\left(\lambda+\tfrac{\varepsilon}{4},\lambda-\tfrac{\varepsilon}{4 }\right)\mathrm{d}\left(\lambda+\tfrac{\varepsilon}{4}\right)\right.\\ &\qquad\qquad\qquad\,+\left.\int_{\frac {\pi}{4}}^{\frac{\varepsilon}{4}}Q_0\left(\lambda+\tfrac{\varepsilon}{4},\lambda-\tfrac{\varepsilon}{4}\right )\mathrm{d}\left(\lambda-\tfrac{\varepsilon}{4}\right)\right]\\ &=-\lim\limits_{\varepsilon\to0}\left\{\int_{ 1}^{\frac{\pi}{\varepsilon}}P_0\left[\tfrac{(\mu+1)\varepsilon}{4},\tfrac{(\mu-1)\varepsilon}{4} \right]\mathrm{d}\left[\tfrac{(\mu+1)\varepsilon}{4}\right]\right.\\ &\qquad\qquad\qquad\,+\left.\int_ {1}^{\frac{\pi}{\varepsilon}}Q_0\left[\tfrac{(\mu+1)\varepsilon}{4},\tfrac{(\mu-1)\varepsilon}{4 }\right]\mathrm{d}\left[\tfrac{(\mu-1)\varepsilon}{4}\right]\right\}\\ &=-\dfrac{1}{2}\lim \limits_{\varepsilon\to0}\left\{\int_{1}^{\frac{\pi}{\varepsilon}}\dfrac{\frac{(\mu+1)\varepsilon}{4}}{ \sin^2\left[\frac{(\mu+1)\varepsilon}{4}\right]}\ln\left|\dfrac{\cot\left(\frac{\mu\varepsilon}{4} \right)}{\cot\left(\frac{\varepsilon}{4}\right)}\right|\mathrm{d}\left(\frac{\mu\varepsilon}{4}\right)\right .\\ &\qquad\qquad\qquad\,+\left.\int_{1}^{\frac{\pi}{\varepsilon}}\dfrac{-\,\frac{(\mu-1) \varepsilon}{4}}{\sin^2\left[\frac{(\mu-1)\varepsilon}{4}\right]}\ln\left|\dfrac{\cot\left(\frac{ \mu\varepsilon}{4}\right)}{\cot\left(\frac{\varepsilon}{4}\right)}\right|\mathrm{d}\left(\frac{\mu\varepsilon} {4}\right)\right\}\\ &=-\dfrac{1}{2}\lim\limits_{\varepsilon\to0}\int_{1}^{\frac{\pi}{\varepsilon }}\left\{\dfrac{(\mu+1)\left(\frac{\varepsilon}{4}\right)^2}{\sin^2\left[\frac{(\mu+1) \varepsilon}{4}\right]}\ln\left|\dfrac{\cot\left(\frac{\mu\varepsilon}{4}\right)}{\cot\left(\frac{\varepsilon} {4}\right)}\right|\right.\\ &\qquad\qquad\qquad\qquad\qquad\,-\left.\dfrac{(\mu-1)\left(\frac{\varepsilon }{4}\right)^2}{\sin^2\left[\frac{(\mu-1)\varepsilon}{4}\right]}\ln\left|\dfrac{\cot\left( \frac{\mu\varepsilon}{4}\right)}{\cot\left(\frac{\varepsilon}{4}\right)}\right|\right\}\mathrm{d}\mu\\ &=-\dfrac{1}{2}\lim\limits_{\delta\to0}\int_{1}^{\frac{\pi}{4\delta}}\left\{\dfrac{(\ mu+1)\,{\delta}^2}{\sin^2\left[(\mu+1){\delta}\right]}\ln\left|\dfrac{\cot\left(\mu \delta\right)}{\cot\left(\delta\right)}\right|\right.\\ &\qquad\qquad\qquad\qquad\qquad\,-\left.\dfrac{(\mu -1)\,{\delta}^2}{\sin^2\left[(\mu-1){\delta}\right]}\ln\left|\dfrac{\cot\left(\mu\delta\right)} {\cot\left(\delta\right)}\right|\right\}\mathrm{d}\mu\\ &=-\dfrac{1}{2}\int_{1}^{+\infty }\left(\dfrac{1}{\mu-1}-\dfrac{1}{\mu+1}\right)\ln\mu\,\mathrm{d}\mu\\ \\ &= -\dfrac{\pi^2}{8} \end{align*}
So, there is \begin{align*}
\bbox[#EFF,15px,border:2px solid blue]{
\begin{split}
I &= \int_0^{\frac{\pi}{2}} \int_0^{\frac{\pi}{2}} \dfrac{x\cot x - y\cot y}{\cos x - \cos y} \, \mathrm{d}x \, \mathrm{d}y \\
&= 4(I_1 + I_2 + I_3) = 4\left[ 0 + \dfrac{\pi^2}{8} + \dfrac{\pi}{4}\ln(2) + \left(-\dfrac{\pi^2}{8}\right) \right] \\
&= \pi\ln2
\end{split}
}
\end{align*}
Remaining Problem The author use the sandwich criterion and controlled convergence to prove the theoremThe following limit is equal to an infinite integral, but the process is extremely cumbersome.
\begin{align*}
L &= \lim\limits_{\delta \to 0} \int_{1}^{\frac{\pi}{4\delta}} \left\{
\frac{(\mu+1) \, \delta^2}{\sin^2\left[(\mu+1)\delta\right]}
\ln\left| \frac{\cot\left(\mu\delta\right)}{\cot\left(\delta\right)} \right|
- \frac{(\mu-1) \, \delta^2}{\sin^2\left[(\mu-1)\delta\right]}
\ln\left| \frac{\cot\left(\mu\delta\right)}{\cot\left(\delta\right)} \right|
\right\} \mathrm{d}\mu \\
&= \int_{1}^{+\infty} \left(
\frac{1}{\mu-1} - \frac{1}{\mu+1}
\right) \ln\mu \, \mathrm{d}\mu
\end{align*}
\begin{align*}
L &= \lim\limits_{\delta \to 0} \int_{1}^{\frac{\pi}{4\delta}} \left\{ \frac{(\mu+1) \, \delta^2}{\sin^2\left[(\mu+1)\delta\right]} \ln\left| \frac{\cot\left(\mu\delta\right)}{\cot\left(\delta\right)} \right|
- \frac{(\mu-1) \, \delta^2}{\sin^2\left[(\mu-1)\delta\right]} \ln\left| \frac{\cot\left(\mu\delta\right)}{\cot\left(\delta\right)} \right| \right\} \mathrm{d}\mu \\
&= \int_{1}^{+\infty} \left( \frac{1}{\mu-1} - \frac{1}{\mu+1} \right) \ln\mu \, \mathrm{d}\mu
\end{align*}
Therefore, I don’t know if there is a faster and more clever method. I hope readers can tell me. Thank you in advance.
[1]: https://i.sstatic.net/NCEUX.png
[2]: https://i.sstatic.net/ID2UA.png