I'm an engineer, not a math guy. Please use small words if possible. ;-)
I am going through this neat paper on a method of partial fraction decomposition by repeated synthetic division. On page 157 it is covering case with repeated irreducible quadratics in denominator - and it says this:
"Multiply both sides by the denominator...then We reduce the right hand side modulo $x^2+bx+c $ by sending it to the field $\mathbb R[x]/(x^2+bx+c) = $ {$px+q|p,q\in \mathbb{R},x^2+bx+c=0$}. Modulo $x^2+bx+c$....
I have no clue how to "reduce the r.h.s. modulo by sending it to the field". Can someone give me example of how to do such? Preferably with real equations i can ponder like an engineer.
UPDATE 1: Adding real example we can use. Let, $$\frac{N(s)}{D(s)}=\frac{10(s+1)}{(s+1)^3(s^2+5s+6)^3}=\frac{K_1}{s+1}+\frac{K_2}{(s+1)^2}+\frac{K_3}{(s+1)^3}+\frac{M_1s+C_1}{s^2+5s+6}+\frac{M_2s+C_2}{(s^2+5s+6)^2}+\frac{M_3s+C_3}{(s^2+5s+6)^3}$$
Multiplying both sides by D(s) I get, $$N(s) = 10(s+3) = K_1(s+1)^2(s^2+5s+6)^3+K_2(s+1)(s^2+5s+6)^3+K_3(s^2+5s+6)^3+(M_1s+C_1)(s+1)^3(s^2+5s+6)^2+(M_2s+C_2)(s+1)^3(s^2+5s+6)+(M_3s+C_3)(s+1)^3$$
How do i proceed now?