1

This is a problem I have seen while self studying measure theory:

Let $(X,\mathcal{S})$ be a measure space, and $E\in \mathcal{S} \otimes \mathcal{S}$, with $f(x) = (x,x)$ then $K=\{E|f^{-1}(E)\in \mathcal{S} \}$ is a $\sigma$ algebra.

How do I prove $K$ to a $\sigma$ algebra? I am unsure how it contains $\varnothing$, is closed under complement and countable unions.

Jenny Liu
  • 227

1 Answers1

2

Hint: Note that $\emptyset \in \mathcal{S}\otimes \mathcal{S}$ and $\emptyset \in \mathcal{S}$. Also, we have the following union and complement rules for pre-images: $$f^{-1}(E^{c}) = (f^{-1}(E))^{c} \quad \mbox{and} \quad f^{-1}\bigg{(}\bigcup_{n\in \mathbb{N}}E_{n}\bigg{)} = \bigcup_{n\in \mathbb{N}}f^{-1}(E_{n})$$