Let $\lambda>0$ and $(N_t)_{t\ge0}$ be an almost surely right-continuous Poisson process on a probability space $(\Omega,\mathcal A,\operatorname P)$ with intensity $\lambda$.
How can we show that $$Z_n:=\inf\left\{t\ge0:N_t=n\right\}-\sum_{i=1}^{n-1}Z_i$$ is exponentially distributed with parameter $\lambda$ for all $n\in\mathbb N$?
Clearly, $$\operatorname P\left[Z_1>t\right]=\operatorname P\left[N_t=0\right]=e^{-\lambda t}=\lambda\int_t^\infty e^{-\lambda s}\:{\rm d}s\tag1$$ for all $t\in\mathbb R$ and hence, since $\{(t,\infty):t\in\mathbb R\}$ is a $\cap$-stable generator of the Borel $\sigma$-algebra $\mathcal B(\mathbb R)$, we can conclude that $Z_1\sim\operatorname{Exp}(\lambda)$.
Now, for $n\ge2$, we somehow need to use that $(N_t)_{t\ge0}$ has independent increments. I think it's crucial that we have assumed that $(N_t)_{t\ge0}$ is almost surely right-continuous, since this ensures that $(N_t)_{t\ge0}$ is almost surely nondecreasing. This allows us to conclude that \begin{equation}\begin{split}\operatorname P\left[Z_1\le s,Z_2>t\right]&=\operatorname P\left[N_s=1,N_t-N_s=0\right]\\&=\operatorname P\left[N_s=1\right]\operatorname P\left[N_t-N_s=0\right]\\&=\lambda e^{-\lambda t}\end{split}\tag2\end{equation} for all $t\ge s\ge0$. On the other hand, if $s>t\ge0$, then $\operatorname P\left[Z_1\le s,Z_2>t\right]=0$.
But is the distribution of $(Z_1,Z_2)$ uniquely determined by $\{(-\infty,s]\times(t,\infty):s,t\in\mathbb R\}$? And how do we need to argue for general $n$?