As the natural numbers are a subset of the real numbers, $\lim_{n\to\infty} \sqrt[n] {\frac {1 - n^2}{1 + n^2}} = \lim_{u \to\infty} \sqrt[u] {\frac {1 - u^2}{1 + u^2}}$, where $u$ is a real number.
Let $u = \tan x, x \in [0, \frac{\pi}{2})$ and $x \in \mathbb R$, as the range of $\tan x$ is $[0, \infty)$ in the given domain.
Then $1 - u^2 = \frac{\cos^2 x - \sin^2 x}{\cos^2 x} = \cos(2x) \sec^2 x$, and $1 + u^2 = \sec^2 x$. Hence we need to find:
$$\lim_{x \to \pi/2} {\cos(2x)}^{1 / \tan x} =\lim_{x \to \pi/2} (\cos 2x)^0 = \boxed{1}.$$
as $\lim_{x \to \pi/2} \tan x = +\infty \Rightarrow \lim_{x \to \pi/2} \frac{1}{\tan x} = 0$.