How can I prove that this function is a bivariate density, meaning the double integral should equal $1$.
$$\iint_{\mathbb R^2} \:\frac{\left(1+\sin x\:\sin y\right)}{2\:\pi}e^{-\frac{\left(x^2+y^2\right)}{2}}dxdy$$
How can I prove that this function is a bivariate density, meaning the double integral should equal $1$.
$$\iint_{\mathbb R^2} \:\frac{\left(1+\sin x\:\sin y\right)}{2\:\pi}e^{-\frac{\left(x^2+y^2\right)}{2}}dxdy$$
$$\begin{align}\iint_{\mathbb R^2} \:\frac{\left(1+\sin x\:\sin y\right)}{2\:\pi}e^{-\frac{\left(x^2+y^2\right)}{2}}dxdy&=\frac{1}{2\pi}\iint_{\mathbb R^2}e^{-\frac{x^2+y^2}2}dxdy\\&=\frac1{2\pi}\int_0^{2\pi}d\phi\int_0^\infty e^{-r^2/2}r dr\\&=\int_0^\infty e^{-u}du\\&=-e^{-\infty}-(-e^0)\\&=1\end{align}$$
On the first line, I've noticed that the term containing $\sin$ is odd (in both $x$ and $y$), so integrating over a symmetric interval is $0$. On the second line I've changed to polar coordinates. Third line, I did a change of variable, $r^2/2=u$, so $du=rdr$.