This WolframMathworld-page, mentions:
$$Z(n) = \sum_{k=1}^{\infty} \left( \frac{1}{\rho_k^n} + \frac{1}{(1-\rho_k)^n}\right) \quad n \in \mathbb{N}$$
where $\rho_k$ is the $k$-th non-trivial zero of the Riemann $\zeta$-function.
The page also lists these first 6 finite series expressions for $Z(n)$:
I have been searching for a pattern and found through re-ordering the terms:
$Z(1)= 1 + \frac{\gamma}{2}- \frac{\ln(4\pi)}{2}$
$Z(2)= 1 + \gamma^2- \frac34\zeta(2)+\frac{2}{1}\gamma^0\gamma_1$
$Z(3)= 1 + \gamma^3- \frac78\zeta(3)+\frac{3}{1}\gamma^1\gamma_1+ \frac32\gamma^0\gamma_2 $
$Z(4)= 1 + \gamma^4- \frac{15}{16}\zeta(4)+\frac{4}{1}\gamma^2\gamma_1+\frac{4}{2}\gamma^1\gamma_2+\frac46\gamma^0\gamma_3 \qquad\qquad\qquad\qquad+ 2\gamma^0\gamma_1^2$
$Z(5)= 1 + \gamma^5- \frac{31}{32}\zeta(5)+ \frac{5}{1}\gamma^3\gamma_1+\frac{5}{2}\gamma^2\gamma_2+\frac{5}{6}\gamma^1\gamma_3+\frac{5}{24}\gamma^0\gamma_4 \qquad\qquad\,\,+ 5\gamma^1\gamma_1^2+\frac{5}{2}\gamma^0\gamma_1\gamma_2$
$Z(6)= 1 + \gamma^6- \frac{63}{64}\zeta(6)+ \frac{6}{1}\gamma^4\gamma_1+\frac{6}{2}\gamma^3\gamma_2+\frac{6}{6}\gamma^2\gamma_3+\frac{6}{24}\gamma^1\gamma_4+\frac{6}{120}\gamma^0\gamma_5 \,\,\,+6\gamma^1\gamma_1\gamma_2+ 9\gamma^2\gamma_1^2+2\gamma^0\gamma_1^3+\gamma_1\gamma_3+\frac34\gamma^0\gamma_2^2$
where the left part could be simplified into: $$1+\gamma^{n}-{\frac { \left( {2}^{n}-1 \right)}{{2}^{n}}\,\zeta(n)}+n\sum _{k=1}^{n-1}{\frac {\gamma^{n-k-1}\gamma \left( k \right) }{\Gamma \left( k+1 \right) }}$$
however, I struggle to find a pattern in the remaining terms in the right part.
Q1: Does anybody know whether a full finite series expression exist in the literature?
Q2: Are there expressions for $Z(>6)$ available somewhere in the literature?
ADDED:
Thanks to the references provided in the answers below (esp. eq. 47 in Keiper's paper), I managed to derive this recurrence relation (note I use the more commonly used $\sigma_k$ instead of $Z(k)$):
Set:
$\sigma_1 = 1 + \frac{\gamma}{2}- \frac{\ln(4\pi)}{2}$
and for $k>1, k \in \mathbb{N}$:
$$\sigma_k=1+\left(\frac{1}{2^k}-1 \right )\zeta(k)+\frac{\gamma\,\gamma_{k-2}}{\Gamma(k-1)}+\frac{k\,\gamma_{k-1}}{\Gamma(k)}-\sum_{j=1}^{k-2}\frac{\gamma_{j-1}}{\Gamma(j)}\,\left( 1+\left(\frac{1}{2^{k-j}}-1\right)\zeta(k-j)-\sigma_{k-j}\right)$$
and this perfectly generates $\sigma_7, \sigma_8, \cdots$ in terms of a finite series of Stieltjes constants :-)
