In Gortz, Wedhorn book Algebraic Geometry - Remark 13.7 (p.371)
They say,
Let $A=\bigoplus_{d\ge0}A_d$ be a graded ring. We can "thin out" $A$ and "change $A_0$" without changing the scheme $\operatorname{Proj} A$. More precisely, fix integers $k,\delta\ge1$ and define a new graded ring $A'$ by $A_0'=\mathbb Z$, $A'_d=0$ for $0<d<k$ and $ A'_d=A_{d\delta}$ for $d\ge k$. $\mathfrak{p}\mapsto \mathfrak{p}\cap A'$ defines a bijection $\operatorname{Proj} A\to \operatorname{Proj} A'$. For any homogeneous element $f\in A_+$ we find $f^{k\delta}\in A'$. It is clear that $D_+(f)=D_+(f^{k\delta})$ and it is easy to see that $A_{(f)}=A'_{(f^{k\delta})}$. Thus we have an isomorphism $$\operatorname{Proj} A\to\operatorname{Proj} A'$$
[Question and try]
I wonder if the map $\mathfrak{p} \mapsto \mathfrak{p} \cap A'$ is actually $\mathfrak{p}= \bigoplus_d \mathfrak{p}_d \mapsto \bigoplus_d(\mathfrak{p}_{d\delta} \cap A_{d\delta}$). Then, in $d=0$ term, $\mathfrak{p}_{0} \cap A_0 = \mathfrak{p}_0 \cap \mathbb{Z}$ ? I think it is nonsense. In fact, I don't understand how to intersect $\mathfrak{p}$ with $ A'$
For the simplicity take $k=2 , \delta=2$. Then, maybe $$A= A_0 \;\oplus \;A_1\;\oplus \;A_2\;\oplus \;A_3\;\oplus \;A_4\;\oplus \;A_5 \;\oplus A_6\;\oplus \;\dots $$ $$A'=\mathbb{Z}\;\oplus \;\;0\;\; \;\oplus A_4\;\oplus \;A_6\;\oplus \;A_8 \;\oplus \;A_{10} \;\oplus A_{12} \;\oplus \;\dots$$
In this situation, how can I construct graded homomorphism from $A$ to $A'$? That is, how can I have an isomorphism from $\operatorname{Proj} A\to\operatorname{Proj} A'$.
Thank you.