From $$\sum_{n=1}^{\infty}\ln \left(1+\frac{(-1)^n}{2^n}\right)$$
you can use the alternating series test. Specifically, the sum is equal to $$\sum_{n=1}^{\infty}\left(-1\right)^{n}\ln\left(\left(1+\frac{\left(-1\right)^{n}}{2^{n}}\right)^{\left(-1\right)^{n}}\right)$$
Then it is enough to show that $$\ln\left(\left(1+\frac{\left(-1\right)^{n}}{2^{n}}\right)^{\left(-1\right)^{n}}\right) > \ln\left(\left(1+\frac{\left(-1\right)^{n+1}}{2^{n+1}}\right)^{\left(-1\right)^{n+1}}\right)$$
Exponentiating both sides yields $$\left(1+\frac{\left(-1\right)^{n}}{2^{n}}\right)^{\left(-1\right)^{n}} > \left(1+\frac{\left(-1\right)^{n+1}}{2^{n+1}}\right)^{\left(-1\right)^{n+1}}$$
Split this into two cases: $n$ odd and $n$ even. For $n$ odd, the inequality would simplify to $$\left(1-\frac{1}{2^{n}}\right)^{-1} > \left(1+\frac{1}{2^{n+1}}\right)^{1}$$
This is easy to show since $\left(1-\frac{1}{2^{n}}\right)\left(1+\frac{1}{2^{n+1}}\right) < 1-\frac{1}{2^{n+1}} < 1$. Similarly for $n$ even, the inequality would be $$\left(1+\frac{1}{2^{n}}\right)^{1} > \left(1-\frac{1}{2^{n+1}}\right)^{-1}$$
This is also easy to show since $\left(1+\frac{1}{2^{n}}\right)\left(1-\frac{1}{2^{n+1}}\right) = 1+\frac{1}{2^{x}}\left(\frac{1}{2}-\frac{1}{2^{\left(n+1\right)}}\right) > 1$. Therefore by the alternating series test, the sum would converge.