I think that for this problem, brute force could be a simple solution.
Using Cardano method, the three roots are given by
$$z_1=\frac{1}{3} \left(\frac{\sqrt[3]{3 \sqrt{3} \sqrt{27 \lambda ^2+4 \lambda }+27
\lambda +2}}{\sqrt[3]{2}}+\frac{\sqrt[3]{2}}{\sqrt[3]{3 \sqrt{3} \sqrt{27 \lambda
^2+4 \lambda }+27 \lambda +2}}+1\right)$$
$$z_2=-\frac{\left(1-i \sqrt{3}\right) \sqrt[3]{3 \sqrt{3} \sqrt{27 \lambda ^2+4 \lambda
}+27 \lambda +2}}{6 \sqrt[3]{2}}-\frac{1+i \sqrt{3}}{3\ 2^{2/3} \sqrt[3]{3
\sqrt{3} \sqrt{27 \lambda ^2+4 \lambda }+27 \lambda +2}}+\frac{1}{3}$$
$$z_3=-\frac{\left(1+i \sqrt{3}\right) \sqrt[3]{3 \sqrt{3} \sqrt{27 \lambda ^2+4 \lambda
}+27 \lambda +2}}{6 \sqrt[3]{2}}-\frac{1-i \sqrt{3}}{3\ 2^{2/3} \sqrt[3]{3
\sqrt{3} \sqrt{27 \lambda ^2+4 \lambda }+27 \lambda +2}}+\frac{1}{3}$$
Now, let us work the common term
$$A=\sqrt[3]{3 \sqrt{3} \sqrt{27 \lambda ^2+4 \lambda }+27
\lambda +2}$$
$$A^3=3 \sqrt{3} \sqrt{27 \lambda ^2+4 \lambda }+27 \lambda +2$$ and use Taylor series
$$A^3=2+6 \sqrt{3} \sqrt{\lambda }+27 \lambda +\frac{81}{4} \sqrt{3} \lambda
^{3/2}-\frac{2187}{64} \sqrt{3} \lambda ^{5/2}+O\left(\lambda ^{7/2}\right)$$ Then, the binomial theorem
$$A=\sqrt[3]{A^3}=\sqrt[3]{2}+\sqrt[3]{2} \sqrt{3} \sqrt{\lambda }+\frac{3 \lambda }{2^{2/3}}-\frac{5
\sqrt{3} \lambda ^{3/2}}{4\ 2^{2/3}}-3 \sqrt[3]{2} \lambda ^2+\frac{231 \sqrt{3}
\lambda ^{5/2}}{64\ 2^{2/3}}+\frac{21 \lambda ^3}{2^{2/3}}+O\left(\lambda
^{7/2}\right)$$ Now, long division
$$\frac 1 A=\frac{1}{\sqrt[3]{2}}-\frac{\sqrt{3} \sqrt{\lambda }}{\sqrt[3]{2}}+\frac{3 \lambda
}{2 \sqrt[3]{2}}+\frac{5 \sqrt{3} \lambda ^{3/2}}{8 \sqrt[3]{2}}-\frac{3 \lambda
^2}{\sqrt[3]{2}}-\frac{231 \sqrt{3} \lambda ^{5/2}}{128 \sqrt[3]{2}}+\frac{21
\lambda ^3}{2 \sqrt[3]{2}}+O\left(\lambda ^{7/2}\right)$$
AT this point, we have all the elements required for the expansion of the roots. This should lead to
$$z_1=1+\lambda -2 \lambda ^2+7 \lambda ^3+O\left(\lambda ^{7/2}\right)$$
$$z_2=i \sqrt{\lambda }-\frac{\lambda }{2}-\frac{5}{8} i \lambda ^{3/2}+\lambda
^2+\frac{231}{128} i \lambda ^{5/2}-\frac{7 \lambda ^3}{2}+O\left(\lambda
^{7/2}\right)$$
$$z_3=-i \sqrt{\lambda }-\frac{\lambda }{2}+\frac{5}{8} i \lambda ^{3/2}+\lambda
^2-\frac{231}{128} i \lambda ^{5/2}-\frac{7 \lambda ^3}{2}+O\left(\lambda
^{7/2}\right)$$
Checking
$$z_1+z_2+z_3=1+O\left(\lambda ^{7/2}\right)$$
$$z_1z_2+z_1z_3+z_2z_3=O\left(\lambda ^{7/2}\right)$$
$$z_1z_2z_3=\lambda +O\left(\lambda ^4\right)$$