I have two following sums $ S_1 = \sum_{k=1}^{K} \binom{N}{2k-1}$, $ S_2 = \sum_{k=1}^{K} \binom{N}{2k}$. When $2K=N$, it is easy to obtain the results, however, is there a closed-form solution for $2K<N$? Or just a tight upper/lower bound? Any comments would be appreciated!
-
This has been asked many times before, including by myself, and there is much to say about this. But the short answer is "no". – Servaes Sep 20 '20 at 14:26
-
Thanks, but I'm wondering if there exists some special cases, e.x. $N = \delta K$, where $\delta$ is a constant, which have some closed-solutions or approximations. – Kris Prokins Sep 21 '20 at 03:10
-
@Servaes: well, some different rendering can be done ..of course it depends on what one wants to obtain and for which purpose – G Cab Sep 24 '20 at 17:50
1 Answers
We can rewrite the sums of interest as $$ \eqalign{ & S_{\,1} = \sum\limits_{k = 1}^K {\left( \matrix{ N \cr 2\,k - 1 \cr} \right)} = \sum\limits_{k = 0}^{K - 1} {\left( \matrix{ N \cr 2\,k + 1 \cr} \right)} \cr & S_{\,2} = \sum\limits_{k = 1}^K {\left( \matrix{ N \cr 2\,k \cr} \right)} = \sum\limits_{k = 0}^K {\left( \matrix{ N \cr 2\,k \cr} \right)} - 1 = S_{\,0} - 1 \cr} $$ Then consider that $$ \sum\limits_{k = 0}^K {\left( \matrix{ N \cr 2\,k \cr} \right)x^{\,2k} } + \sum\limits_{k = 0}^{K - 1} {\left( \matrix{ N \cr 2\,k + 1 \cr} \right)x^{\,2k + 1} } = \sum\limits_{k = 0}^{2K} {\left( \matrix{ N \cr \,k \cr} \right)x^{\,k} } $$ Therefore we can concentrate on the Truncated Binomial $$ B_{\,T} (z,r,m) = \sum\limits_{k = 0}^m {\left( \matrix{ r \cr k \cr} \right)z^{\,k} } \quad \left| \matrix{ \;r \in R \hfill \cr \;0 \le m \in Z \hfill \cr \;z \in C \hfill \cr} \right. $$ since therefrom we can retrieve the requested sums as $$ \eqalign{ & S_{\,1} = {{B_{\,T} (1,N,2K) - B_{\,T} ( - 1,N,2K)} \over 2} \cr & S_{\,2} = {{B_{\,T} (1,N,2K) + B_{\,T} ( - 1,N,2K)} \over 2} - 1 \cr } $$
The truncated binomial is just a simple polynomial of degree $m$ in $z$: no way to look for a "simpler" expression.
However it might be useful to "render" it in other forms, to show possible algebraic manipulations , specially
for asymptotics.
I will concisely resume some alternative representations in the following.
a) Double o.g.f.
We have that taking the o.g.f. both on $k$ and $m$ $$ \bbox[lightyellow] { $$ \bbox[lightyellow] { \eqalign{ & F_{\,a} (x,z,r)\quad \left| \matrix{ \;0 \le m \in \mathbb Z \hfill \cr \;z,x,r \in \mathbb C \hfill \cr} \right.\quad = \cr & = \sum\limits_{0\, \le \,\,m} {\left( {\sum\limits_{\left( {0\, \le } \right)\,k\, \le \,m} {\left( \matrix{ r \cr k \cr} \right)x^{\,k} } } \right)z^{\,m} } = \cr & = \sum\limits_{0\, \le \,\,m} {\sum\limits_{\left( {0\, \le } \right)\,k\, \le \,m} {\left( \matrix{ r \cr k \cr} \right) \left( \matrix{ m - k \cr m - k \cr} \right)x^{\,k} z^{\,m} } } = \cr & = \sum\limits_{0\, \le \,k\,} {\left( \matrix{ r \cr k \cr} \right)\left( {zx} \right)^{\,\,k} \sum\limits_{0\, \le \,\,m - k} {\left( \matrix{ m - k \cr m - k \cr} \right)z^{\,m - k} } } = \cr & = {1 \over {1 - z}}\sum\limits_{0\, \le \,k\,} {\left( \matrix{ r \cr k \cr} \right)\left( {zx} \right)^{\,k} } = {{\left( {1 + zx} \right)^{\,r} } \over {\left( {1 - z} \right)}} \cr} } \tag {a.1}$$
Since the sum in $x^k$ is limited, it will converge for any value of $x$.
Concerning the sum in $z$ we consider it as a formal sum.
So
$$
B_{\,T} (z,r,m) = \left[ {z^{\,m} } \right]F_{\,a} (x,z,r)
$$
b) Through the Beta function
The sum of the binomial truncated to $m$ can be given an integral representation which leads to the Incomplete Regularized Beta Function. $$ \eqalign{ & \sum\limits_{0\, \le \,k\, \le \,m} {\left( \matrix{ r \cr k \cr} \right)x^{\,r - k} \left( {1 - x} \right)^{\,k} } = \left( {r - m} \right)\left( \matrix{ r \cr m \cr} \right)\int_0^x {t^{\,r - m - 1} \left( {1 - t} \right)^{\,m} dt} = \cr & = \left( {r - m} \right){{\Gamma (r + 1){\rm B}(x;\,r - m,m + 1)} \over {\Gamma (m + 1)\Gamma (r - m + 1)}} = {{{\rm B}(x;\,r - m,m + 1)} \over {{\rm B}(r - m,m + 1)}} = \cr & = CDF\;Beta\;Distrib.\quad \left| \matrix{ \;r,x \in \mathbb R \hfill \cr \;x \in \left[ {0,1} \right] \hfill \cr \;0 \le m \in \mathbb Z < r \hfill \cr} \right. \cr} $$ re. to this post
Making the substitution $$ {{1 - x} \over x} = y\quad \Rightarrow \;\quad {1 \over {1 + y}} = x\quad \left| {\;x \in \left[ {0,1} \right]\; \leftrightarrow \;y \in \left[ {0,\infty } \right)} \right. $$ we get $$ \bbox[lightyellow] { \eqalign{ & B_{\,T} (y,r,m) = \sum\limits_{0\, \le \,k\, \le \,m} {\left( \matrix{ r \cr k \cr} \right)y^{\,k} } = \cr & = \left( {1 + y} \right)^{\,r} {{{\rm B}\left( {{1 \over {1 + y}};\,r - m,m + 1} \right)} \over {{\rm B}\left( {r - m,m + 1} \right)}} \quad \quad \left| \matrix{ \,y \in \left[ {0,\infty } \right) \hfill \cr \;0 \le m \in \mathbb Z \hfill \cr \,\,0 \le m < r \in \mathbb R \hfill \cr} \right. \cr} } \tag {b.1}$$
Yet, since the validity of the above is limited to non-negative values of $y$, it is not useful to operate the bi-section.
c) Through the Hypergeometric function
Either from the expression of the Inc. Rat. Beta
wrt the Hypergeometric function, either directly we obtain
$$
\eqalign{
& B_{\,T} (z,r,m) = \sum\limits_{k\, = \,0}^m
{\left( \matrix{ r \cr k \cr} \right)z^{\,k} }
= z^{\,m} \sum\limits_{0\, \le \,k\,\left( { \le \,m} \right)}
{\left( \matrix{ r \cr m - k \cr} \right)\left( {{1 \over z}} \right)^{\,k} } = \cr
& = z^{\,m} \sum\limits_{0\, \le \,k\,\left( { \le \,m} \right)}
{{{r^{\,\underline {\,m - k\,} } } \over {1^{\,\overline {\,m - k\;} } }}\left( {{1 \over z}} \right)^{\,k} }
= z^{\,m} \sum\limits_{0\, \le \,k\,\left( { \le \,m} \right)}
{{{r^{\,\underline {\,m\,} } \left( {r - m} \right)^{\,\underline {\, - k\,} } }
\over {1^{\,\overline {\,m\;} } \left( {m + 1} \right)^{\,\overline {\, - k\;} } }}\left( {{1 \over z}} \right)^{\,k} } = \cr
& = z^{\,m} \left( \matrix{ r \cr m \cr} \right)\sum\limits_{0\, \le \,k\,\left( { \le \,m} \right)}
{{{\left( {r - m} \right)^{\,\underline {\, - k\,} } } \over {\left( {m + 1} \right)^{\,\overline {\, - k\;} } }}
\left( {{1 \over z}} \right)^{\,k} } = \cr
& = z^{\,m} \left( \matrix{ r \cr m \cr} \right)\sum\limits_{0\, \le \,k\,\left( { \le \,m} \right)}
{{{m^{\,\underline {\,k\,} } } \over {\left( {r - m + 1} \right)^{\,\overline {\,k\;} } }}
\left( {{1 \over z}} \right)^{\,k} } = \cr
& = z^{\,m} \left( \matrix{ r \cr m \cr} \right)\sum\limits_{0\, \le \,k\,\left( { \le \,m} \right)}
{{{\left( { - m} \right)^{\,\overline {\,k\;} } } \over {\left( {r - m + 1} \right)^{\,\overline {\,k\;} } }}
\left( { - {1 \over z}} \right)^{\,k} } = \cr
& = z^{\,m} \left( \matrix{ r \cr m \cr} \right)
{}_2F_{\,1} \left( {\left. {\matrix{ { - m,\;1} \cr {r + 1 - m} \cr } \;} \right|\; - {1 \over z}} \right) \cr}
$$
where $x^{\,\underline {\,k\,} } ,\quad x^{\,\overline {\,k\,} } $ represent
respectively the Falling and Rising Factorial.
Summarizing we have
$$ \bbox[lightyellow] {
\eqalign{
& B_{\,T} (z,r,m) = \sum\limits_{k\, = \,0}^m {\left( \matrix{ r \cr k \cr} \right)z^{\,k} }
= z^{\,m} \sum\limits_{0\, \le \,k\,\left( { \le \,m} \right)}
{\left( \matrix{ r \cr m - k \cr} \right)\left( {{1 \over z}} \right)^{\,k} } = \cr
& = z^{\,m} \left( \matrix{ r \cr m \cr} \right){}_2F_{\,1}
\left( {\left. {\matrix{ { - m,\;1} \cr {r + 1 - m} \cr } \;} \right|\; - {1 \over z}} \right) = \cr
& = \left( {1 + z} \right)^{\,m} \left( \matrix{ r \cr m \cr} \right)
{}_2F_{\,1} \left( {\left. {\matrix{ { - m,\;r - m} \cr {r + 1 - m} \cr } \;} \right|\;{1 \over {1 + z}}} \right)
\quad \left| \matrix{
\;z \in \mathbb C \hfill \cr
\;m \in \mathbb Z \hfill \cr
\;r \notin \mathbb Z\; \vee \;m \le r \in \mathbb Z \hfill \cr} \right. \cr}
} \tag {c.1}$$
where the last equivalent expression comes from the Beta function, as well as from one of the Pfaff transformations.
For the bisection we will use the first.
We can also directly express the bi-sected binomial as a ${}_3F_{\,2} $ Hypergeometric function.
Starting from
$$
\sum\limits_{0\, \le \,k\, \le \,m}
{\left( \matrix{ r \cr 2k + p \cr} \right)y^{\,2k + p} }
= y^{\,2m + p} \sum\limits_{0\, \le \,k\left( {\, \le \,m} \right)}
{\left( \matrix{ r \cr 2m + p - 2k \cr} \right)\left( {y^{\, - 2} } \right)^{\,k} }
$$
Putting
$$
t_{\,k} = \left( \matrix{ r \cr 2m + p - 2k \cr} \right)
= {{r^{\,\underline {\,2m + p - 2k\,} } } \over {1^{\,\overline {\,2m + p - 2k\,} } }}
$$
we have
$$
\eqalign{
& t_{\,0} = \left( \matrix{ r \cr 2m + p \cr} \right) \cr
& {{t_{\,k + 1} } \over {t_{\,k} }}
= {{r^{\,\underline {\,2m + p - 2 - 2k\,} } } \over {1^{\,\overline {\,2m + p - 2 - 2k\,} } }}
{{1^{\,\overline {\,2m + p - 2k\,} } } \over {r^{\,\underline {\,2m + p - 2k\,} } }} = \cr
& = {{\left( { - r} \right)^{\,\overline {\,2m + p - 2 - 2k\,} } }
\over {\left( { - r} \right)^{\,\overline {\,2m + p - 2k\,} } }}
{{1^{\,\overline {\,2m + p - 2k\,} } } \over {1^{\,\overline {\,2m + p - 2 - 2k\,} } }} = \cr
& = {{\left( {1\, + 2m + p - 2 - 2k\,} \right)^{\,\overline {\,2\,} } }
\over {\left( { - r\, + 2m + p - 2 - 2k\,} \right)^{\,\overline {\,2\,} } }} = \cr
& = {{\left( {2m + p - 1 - 2k\,} \right)\left( {\,2m + p - 2k\,} \right)}
\over {\left( { - r\, + 2m + p - 2 - 2k\,} \right)\left( { - r\, + 2m + p - 1 - 2k\,} \right)}} = \cr
& = {{\left( {k - m - \left( {p - 1} \right)/2\,} \right)\left( {\,k - m - p/2\,} \right)}
\over {\left( {k - m + \left( {r - p + 2} \right)/2\,} \right)\left( {k - m + \left( {r - p + 1} \right)/2\,} \right)}} \cr}
$$
and so we get
$$ \bbox[lightyellow] {
\eqalign{
& \sum\limits_{0\, \le \,k\, \le \,m}
{\left( \matrix{ r \cr 2k + p \cr} \right)z^{\,2k + p} } = \cr
& = z^{\,2m + p} \sum\limits_{0\, \le \,k\left( {\, \le \,m} \right)}
{\left( \matrix{ r \cr 2m + p - 2k \cr} \right)\left( {z^{\, - 2} } \right)^{\,k} } \cr
& = z^{\,2m + p} \left( \matrix{ r \cr 2m + p \cr} \right)
{}_3F_{\,2} \left( {\left. {\matrix{
{ - m - \left( {p - 1} \right)/2,\; - m - p/2,\;1} \cr
{ - m + \left( {r - p + 2} \right)/2,\; - m + \left( {r - p + 1} \right)/2} \cr
} \;} \right|\;{1 \over {z^{\,2} }}} \right) \cr
& \left| \matrix{
\;z \in \mathbb R \hfill \cr
\;0 \le m,\, p \in \mathbb Z \hfill \cr
\;2m + p \le r \in \mathbb R \hfill \cr} \right. \cr}
} \tag {c.2}$$
- 35,964