Here's my problem : I know from Curry-Howard that simply typed lambda-calculus is isomorphic to natural deduction.
Now I know that natural deduction admits cut-elimination. I also know that the pullback of cut-elimination through Curry-Howard is reduction of terms (aka execution of a program).
So, I should deduce that every term strongly normalizes, but that implies that simply typed lambda-calculus is not Turing-complete (or it would have halting-problem-like limitations), which annoys me. Lambda-calculus is famously Turing-complete, isn't it?
Is the mistake the confusion between typed and untyped lambda-calculus? If so, why do we always say that Curry-Howard is a correspondance between proofs and programs if it only maps proof to very particular programs that always halt?
Thanks for helping me!