Let $\mathcal A$ commutative, unital Banach algebra and denote by $\mathcal M(\mathcal A)$ the space of multiplicative functionals on $\mathcal A$. The Gelfand transform is defined by
$$\Gamma: \mathcal A \rightarrow \mathcal M(\mathcal A), \quad A \mapsto \Gamma(A),$$
where $\Gamma(A)(m)=m(A),\forall m\in \mathcal M(\mathcal A)$.
Why is the following implication true?
$$\Gamma(A) = 0 \Rightarrow \sigma(A) = \{0\}$$
($\sigma (A)$ is the spectrum of $A\in \mathcal A$)